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This article presents a straightforward technique for computing solutions
to discrete, multi-period consumption/investment problems. It solves for
the optimal stochastic consumption plans, as well as the optimal dynamic
trading strategies that maximize utility for an individual. The technique
permits general utility functions that may or may not be time-separable.
It also allows general changes in the investment opportunity set and
allows the user to impose upper and lower bounds on trading behaviour.
Divergent borrowing and lending rates can be handled, as can stochastic
labour income risks. Computed solutions verify the predictions of
well-known intertemporal works by Merton, Breeden and others.

(J.E.L.: G13).

1. Introduction

Over thirty years ago, Samuelson (1969), Merton (1969, 1971, 1973),
Fama (1970), Hakansson (1970), Rubinstein (1976), Breeden and Litzenberger
(1978) and Breeden (1979, 1984) introduced finance theory to multiperiod or
‘intertemporal’ models of consumption and portfolio choice. Those works
showed us that optimal consumption and portfolio rules in the multiperiod
world we live in are significantly different from those derived in single-period
models. Although theorists are surely unanimous on this point, very few
finance students and portfolio managers are being taught how to compute
optimal multiperiod portfolio and consumption strategies. The intent of
this paper is to present a straightforward approach to computing optimal
dynamic consumption and portfolio strategies for relatively general problems.

The reasons for the lack of usage of multiperiod financial models are
not hard to find. It is nearly impossible to solve analytically for the actual
optimal policies with realistic fluctuations in investment opportunities,
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given typical limitations on feasible trading strategies. Explicit solutions by
academia’s finest researchers for optimal dynamic trading strategies
usually assume hyperbolic absolute risk aversion (HARA) utility functions
and at most a single random element in investment opportunities.1 Even
within the HARA class of preferences and 1-variable opportunity sets,
none of these researchers find explicit solutions that produce borrowing
and lending strategies that take account of divergent borrowing and lend-
ing rates. Furthermore, meaningful income risk is typically not utilized in
finding optimal portfolios.

The lack of closed-form analytical solutions is not an insurmountable
barrier to computation of optimal trading and consumption strategies.
The technique of stochastic dynamic programming can be used to find
these optimal strategies for very general problems. Most theorists impli-
citly or explicitly assume that dynamic programming is the approach used
to compute solutions. Thus, the optimization technique presented here
should be viewed as an alternative to dynamic programming as a solution
technique for the multiperiod consumption and investment problem.

If the dynamic programming technique were easy to use, this paper
probably would not have been written. Unfortunately, it is not easy to
apply stochastic dynamic programming to many interesting finance prob-
lems. One must first lay out the tree structure of events. Then, starting at
the last period, T, in every possible state of the world one solves for the
optimal consumption and portfolio rules for what will then be a single-
period problem. Since when these solutions are computed, the optimal
wealths that will be carried into time T in various states are unknown,
solutions must be computed for a grid of possible levels of wealth in each
state. Given those solutions for time T, one backs up to time T� 1 and
solves in each state of the world for optimal consumption and portfolio
rules. Again, since it is unknown how much wealth will be carried into time
T� 1, one must solve for policies as a function of wealth at T� 1. As the
process computes backward through time-states, it computes the utilities
of all possible wealth levels, all but one of which are subsequently found to
be non-optimal. This is a computationally burdensome process.

The optimization method proposed here is straightforward, intuitive
and forward-looking. The technique can be easily taught and programmed
in worksheets and in relatively easy computer programs.2 In the examples
in the paper, one sees that all of the principles of intertemporal portfolio

1 For examples, see Samuelson (1969), Merton (1969, 1971), Hakansson (1970), Kraus and
Litzenberger (1975) Rubinstein (1976, 1981), Brennan (1979), Sundaresan (1984) and Cox et al.
(1985a and b) and Cox and Huang (1987). Multiple state variables can be handled with logarithmic
utility, since a log utility person has no net hedging demands.

2 A simple program that solves the problems examined in this paper is available on request.
Campbell Harvey at Duke has also programmed this method in GAUSS and in SAS.
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theory are verified computationally, as, of course, they surely must be, if
the theory is correct.

There are two key elements to the approach developed here. The first
element is the exact representation of the pay-offs from dynamic trading
strategies under uncertainty. An intuitive pay-off matrix much like that in
Ross (1976) is developed to handle general problems in modeling dynamic
trading strategies. Of course, this approach has as its foundations the
scenario or ‘time-state preference’ approach of Arrow (1964), Debreu
(1959) and Hirshleifer (1970). This type of model has been used extensively
in theory by many authors and in practical applications by Cox et al.
(1979) and Breeden and Litzenberger (1978).

The second important element of this paper is the multiperiod adapta-
tion of a very insightful general optimization technique derived by William
F. Sharpe (1978) and used by him in single-period portfolio problems.3 A
virtue of Sharpe’s optimization method is the forward-looking nature of
the technique, as opposed to the usual backward method of dynamic
programming. This more intuitive approach to multiperiod strategies
should enhance the understanding and usage of multiperiod planning
models by portfolio managers.

In the remainder of the paper, Section 2 briefly presents Sharpe’s
portfolio optimization technique, and Section 3 gives the mathematical
representation of dynamic trading strategies. Section 4 extends Sharpe’s
optimization technique to the intertemporal consumption-investment
problem. Section 5 illustrates the technique and compares the computed
optimal consumption and portfolio rules with the predictions of the
theorists. Section 6 discusses limitations and extensions of the method,
and Section 7 concludes the paper.

2. Sharpe’s Portfolio Optimization Technique

Since Sharpe’s optimization technique is not extensively used by
academics, the general method and the principal application to finding
mean-variance efficient portfolios will be sketched. Sharpe’s principal
observation is that an optimal portfolio is one that has equal expected
marginal utilities of $1 invested in every asset. This follows from the first-
order condition for an optimal portfolio, and is a well-known result (as
Sharpe notes). The beauty of the technique is its economic intuition and its
surprising computational efficiency. In the optimization literature, it is
standard gradient computation method.

3 More readable treatments with examples of this optimization technique are in Sharpe’s 1987
book Asset Allocation Tools, and his popular textbook on Investments, 1985, Chapter 20.
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To find mean-variance efficient portfolios, Sharpe computes the utility
of a portfolio as its expected return less the variance of the portfolio
divided by the risk tolerance of the investor. Thus, more risk-tolerant
investors penalize risk less. Mathematically:

(Sharpe single-period) U ¼ E(řp)� Var(řp)=T(1)

where the symbols are standard for portfolio p. The marginal utility of asset
i is given by differentiating (1) with respect to its portfolio weight:

(Sharpe single-period) MUi ¼ E(ři)� (2=T) Cov(ři; řp)ð2Þ

As an asset’s weight is increased in the portfolio, its marginal utility decreases
in (2), since its covariance with the portfolio increases.

Sharpe’s method of finding the optimal portfolio relies on the dimin-
ishing marginal utility of increasingly large holdings of a security. First,
start with an arbitrary portfolio. For that portfolio, the vector of marginal
utilities for all assets is computed, as in (2). Since the initial portfolio was
arbitrary and probably not optimal, the marginal utilities for various
assets are likely to differ. Then one does a swap of funds invested from
the lowest marginal utility asset to the highest marginal utility asset. The
gain in utility depends upon the size of the swap, so Sharpe derives the
optimal size of the 2-asset swap.4 The optimally sized swap is then made
and the marginal utilities for all assets are recomputed based upon the new
portfolio. A new swap is identified and made, marginal utilities recom-
puted, and so on. The process ends when all marginal utilities are essen-
tially identical (to the degree of computational accuracy desired). At that
point, since the optimal portfolio is unique if the covariance matrix is
nonsingular, one knows that the optimal portfolio has been found.

One reason not to use this technique in an unconstrained single-period
portfolio problem is that the optimal portfolio can be computed directly in
one step for that case. To find the optimal portfolio, one needs only to invert
the covariance matrix and multiply it times the vector of expected excess
returns on assets. A difficulty in practice with the invert-and-multiply tech-
nique is that the portfolios found often violate maximum or minimum
holdings constraints. For example, many individuals and institutions are
prohibited from short-selling or have significant costs of short sales. If the
direct solution suggests an infeasible negative position in such an asset, one
cannot simply assume that the constrained optimum is to zero out that
holding and hold all other assets in the same proportions. Asset returns’
covariances make portfolio choices very interdependent. Thus, a quadratic
programming approach with Kuhn–Tucker conditions is required for a

4 The optimal swap size equals the marginal utility of the ‘best’ security minus the marginal
utility of the ‘worst’, divided by the variance of their difference in returns. See Sharpe (1978, p. 11 or
1987, p. 59).
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feasible solution to many realistic problems. In such situations, the power and
intuition of this marginal utility-based algorithm are quickly appreciated.

Sharpe shows that his method easily accomodates upper and lower
bounds on assets’ holdings, and those bounds may be different for differ-
ent assets. A simple check of each proposed swap to eliminate moves to
infeasible holdings ultimately results in an optimal constrained portfolio.
The Kuhn–Tucker conditions tell us that an optimal constrained portfolio
has marginal utilities equal for all assets with interior solutions. Assets
constrained by their upper bounds on holdings have marginal utilities
greater than or equal to those of all interior holdings. Assets at their
lower bounds on holdings have marginal utilities lower than or equal to
those of all interior holdings.

The next section elegantly and precisely represents dynamic consump-
tion and portfolio strategies that fulfill time-state by time-state budget
constraints. Given this representation, it is shown that this section’s
single-period optimization technique can be used to obtain solutions to
quite general multiperiod problems.

3. An Exact Representation of Dynamic Trading Strategies

The representation of time and uncertainty used is that of a tree
structure of events. Once the tree structure of events is laid out, the returns
from investments and from trading strategies are summarized by a pay-off

matrix, X, similar to that of Nielsen (1974) and Ross (1976). However, the
pay-off matrix used here explicitly considers contingent dynamic trading
strategies. It is not assumed here that markets are complete or effectively
complete or even Pareto optimal, so investors may not be able to insure
against all risks that they wish to insure.

To illustrate this process, consider a simple trading problem with 3
dates, {0, 1, 2} and two assets – a stock portfolio (with prices like the
Standard and Poor 500 Stock Index’s values) and a real riskless bond that
earns r% for the next period. At each date, there are four possible scenar-
ios for current and prospective future returns, and these may be state-
dependent. The four scenarios at each point in time are generated by
letting the stock portfolio go up or down and by letting the riskless interest
rate go up or down, with all combinations of stock and rate moves being
possible. Let us assume that the tree of stock and bond returns is as in
Figure 1, (where the date and state number are in parentheses).

Note that since the world ends for our trader at time 2, the interest
rate branchings at time 2 for investments to time 3 are suppressed. No
assumption about probabilities has been made. However, if probabilities
of an up move are the same at each node, then the investment opportunity
set in time-state (1,2) strictly dominates that in time-state (1,1), assuming
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that investors may not short securities. The dominance occurs since the
riskless return is higher and the stock market return in (1,2) stochastically
dominates that in (1,1). Similarly, the investment opportunity set in time-
state (1,4) strictly dominates that in time-state (1,3). Thus, states (1,1) and
(1,3) may be said to have ‘bad investment opportunity sets’, whereas states
(1,2) and (1,4) have ‘good investment opportunity sets’. This setup is useful
in Section 6 in illustrating the principles of intertemporal portfolio theory
of Merton (1973) and Breeden (1979, 1984).

Because there are 1, 4, and 8 states at dates 0, 1, and 2, respectively, there
are a total of S¼ 13 ‘time-states’, i.e., nodes in the tree. Each security or
trading strategy’s pay-offs on various dates and under various contingencies
are fully described by the (positive or negative) cash flows that occur in those
13 time-states. The pay-off matrix that describes all possible trading strat-
egies has 13 rows that represent the various time-states. Each possible trade’s
cash flows is a column in that matrix. In this problem, there are N¼ 10 state-
contingent trades under consideration – buy stock or buy bonds in each of
the 5 time-states at time 0 and time 1, {(0,1), (1,1), (1,2), (1,3), (1,4)}, and sell
them the following period. Of course, stocks or bonds can be held for two
periods by buying them at time 0 and again at time 1. Also, note that
multiperiod investments that cannot be liquidated in intermediate periods
are easily represented by columns in the pay-off matrix. The 13� 10 pay-off
matrix, X, is in Table 1.

The pay-off matrix gives the investments and pay-offs on a per share
or per contract basis. Note that futures contracts, which require no initial
investment, easily fit into this framework. The weight vector has as many
elements as there are potential trades, e.g., 10 in the example above. For
any trade for which there is a natural initial investment, it is convenient

Date: 0                            1                         2 
_____________________________________________________________________ 

                                                         1625  (2,1) 
                    1250,   4%                                    (bad opps) 
                        (1,1)                      1083  (2,2) 

                     1625  (2,3) 
                                1250,   8%                                (good opps) 
                                    (1,2)                       1167  (2,4) S = 1000, r = 8%

(0,1)
                                             1250  (2,5) 

                                 750,  10%                         (bad opps) 
                        (1,3)               417  (2,6) 

                                                         1250  (2,7) 
                                 750,  14%                                (good opps) 

                        (1,4)              625  (2,8) 

Figure 1: Tree of Stock and Bond Returns
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(but certainly not necessary) for that trade’s column to be divided by the
cost of the investment. In Table 1, this would divide each column by the
absolute value of its one negative amount; this puts the pay-off matrix in
rate-of-return form for those assets. If that is done, then the weight vector
gives the contingent dollar amounts invested in each such trade.

Complicated strategies and portfolios of assets are represented by the
portfolio weight vector, w, which gives the number of shares or the sizes of
the trades made. The net pay-offs (or costs if negative) in the various time-
states from the trading strategy are given simply by the matrix product,
Xw, which exists since X has dimensions S�N and w is N� 1.

To more fully see that this is an exact and very general representation
of dynamic trading strategies, consider the following illustration related to
the stock and bond example of Figure 1 and Table 1. Focus on Figure 1’s
tree and consider the asset allocation decision (stock-bond mix) at times 0
and 1. A portfolio manager has $12,000,000 to invest initially. Assume that
the initial allocation is 50% of funds in stocks and 50% in bonds, which
implies that she buys $6,000,000/1000¼ 6000 ‘shares’ of the S&P 500
stocks and buys $6,000,000/100¼ 60,000 bonds at time 0. Those positions
are described by letting the first two elements of the portfolio weight
vector be: w1¼ 6000 and w2¼ 60,000.

Next, assume that at time 1 our manager wishes to reduce her
position in stocks if the market jumps up (taking profits), and to increase
her stock position if the market drops down (taking advantage of the
better values). The amount she wishes to shift to or from the bond market
varies with the level of interest rates. The higher interest rates are, the more
is shifted into bonds. An example of this dynamic trading strategy is in
Table 2.

Table 1: Pay-off Matrix X (S�N): Contingent Trades

1 2 3 4 5 6 7 8 9 10
Stock Bond Stock Bond Stock Bond Stock Bond Stock Bond

Time-State 0,1 0,1 1,1 1,1 1,2 1,2 1,3 1,3 1,4 1,4

1 0,1 �1000 �100 0 0 0 0 0 0 0 0
2 1,1 1250 108 �1250 �100 0 0 0 0 0 0
3 1,2 1250 108 0 0 �1250 �100 0 0 0 0
4 1,3 750 108 0 0 0 0 �750 �100 0 0
5 1,4 750 108 0 0 0 0 0 0 �750 �100
6 2,1 0 0 1625 104 0 0 0 0 0 0
7 2,2 0 0 1083 104 0 0 0 0 0 0
8 2,3 0 0 0 0 1625 108 0 0 0 0
9 2,4 0 0 0 0 1167 108 0 0 0 0
10 2,5 0 0 0 0 0 0 1250 110 0 0
11 2,6 0 0 0 0 0 0 417 110 0 0
12 2,7 0 0 0 0 0 0 0 0 1250 114
13 2,8 0 0 0 0 0 0 0 0 625 114

# Banca Monte dei Paschi di Siena SpA, 2004.

D. T. Breeden: Optimal Dynamic Trading Strategies 61



Representation of this dynamic asset allocation strategy:
w0 ¼ (6000,60000,3600,94800,2400,109800,12000,19800,9600,37800)

This shows that with the proposed pay-off matrix for contingent trades, an
exact representation of fairly complex trading strategies is easily done with
the trade vector w. Thus, this generalized portfolio weight vector gives
portfolio holdings for different assets at all dates and under all investment
opportunity sets modeled.

Realistically for most individuals, wage income is a major source of
funds. The level and uncertainty of future income importantly affects
investment and (particularly) consumption decisions. An uncertain time-
and state-dependent income stream is represented by the S� 1 vector of
dollar amounts, y. Correspondingly, the time and state-contingent con-
sumption plan is represented by the S� 1 vector, c. Without loss of
generality, it is assumed that the first income element includes the trader’s
initial wealth, as well as any current income. The set of budget constraints
for time-states is given by the vector equation:

c ¼ yþ Xwð3Þ

That is, at each date and state, consumption equals income plus net wealth
withdrawals. Of course, alternatively, income equals consumption plus net
investment. Note that (3) enforces a separate budget constraint for each
time-state. This is in contrast to many formulations that have just one
budget constraint that the present value of consumption equals the present
value of income and wealth. If markets are not effectively complete, that
simpler budget constraint may produce infeasible solutions. The approach
here is more general.

The apparent simplicity of the vector of budget constraints, (3), may
obscure the richness and generality of the formulation. Future income
uncertainty and optimal consumption choices are being rather fully
modeled – not just added on. To see this, think first of the income
uncertainty already permitted in the tree of Figure 1 (which may be further
‘branched’ to provide a better representation of income uncertainty). If
one works in the automobile industry, for example, then wage income is

Table 2: Dynamic Trading Strategy Illustration

Dollar Amounts Shares Held

t Stock Price Interest Rate Wealth Stocks Bonds Stocks Bonds

0 1000 8% 12,000,000 $6,000,000 $6,000,000 6000 60,000
1 1250 4% $13,980,000 4,500,000 9,480,000 3600 94,800
1 1250 8% 13,980,000 3,000,000 10,980,000 2400 109,800
1 750 10% 10,980,000 9,000,000 1,980,000 12000 19,800
1 750 14% 10,980,000 7,200,000 3,780,000 9600 37,800
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probably tied somewhat to auto industry profits. Auto profits are
dependent upon the general strength of the economy (which is reflected
in stock prices), as well as upon the level of interest rates (since that affects
the cost of financing durable goods). Thus, the income uncertainty of a
manager for one of the auto companies might be modeled as in Table 3.

One can easily verify that the product of the pay-off matrix with
the portfolio holdings vector, Xw, gives the net cash withdrawals from
the portfolio’s value. Negative numbers indicate investments made into the
portfolio at the various dates with the various investment-income situ-
ations. Combining the net portfolio withdrawal amount (or saving) in a
time and state with the income amount for that time and state gives the
individual’s funds for consumption in that time-state. This explains why
(3) represents the state-by-state budget constraints.

Section 4 takes the uncertain income stream, y, and the intertemporal
investment opportunity set, X, and searches for portfolio trading strat-
egies, w, that result in the individual’s optimal consumption plan, c.
Specific formulae are derived for a relatively efficient modification of
Sharpe’s optimization technique to fit this multiperiod problem.

4. Optimal Dynamic Consumption and Trading Strategies: A New

Approach

The optimal dynamic trading strategy is the one which maximizes the
expected value of the individual’s von Neumann–Morgenstern lifetime
utility function for time-state consumption. That is, w is chosen to
maximize U(c, p), where the S� 1 vector p gives the probabilities of getting

Table 3: Uncertain Future Income Stream Illustration

S&P 500 Initial Income Total Income Vector
t Stock Index Interest Rate Initial Wealth Stream Representation y

0 1000 8% $500,000 $100,000 $600,000
1 1250 4% 200,000 200,000
1 1250 8% 150,000 150,000
1 750 10% 85,000 85,000
1 750 14% 70,000 70,000
2 1625 4% 400,000 400,000
2 1083 6% 150,000 150,000
2 1625 8% 300,000 300,000
2 1167 4% 200,000 200,000
2 1250 10% 150,000 150,000
2 417 14% 50,000 50,000
2 1250 10% 125,000 125,000
2 625 14% 80,000 80,000
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to the various time-states, given the initial conditions. For each date, the
sum of the probabilities of various possible states equals unity. In this
formulation the utility function for consumption may be time and state
dependent. For the time-additive case, lifetime expected utility may be
expressed as:

Uðc; fÞ ¼
X

t

X
s
�tsutsðctsÞ ¼ p0uðcÞð4Þ

where p and u are S� 1 vectors of stacked probabilities and utility func-
tions for time-states, respectively, with rows corresponding to those in the
pay-off matrix.

Application of Sharpe’s optimization technique for the intertemporal
problem is straightforward. Starting with Section 3’s representation of
feasible dynamic trading strategies, and given a vector of uncertain future
incomes, the budget constraints of (3) are used to compute the consump-
tion plan that follows from an initial (arbitrary) dynamic trading strategy,
w. From those contingent time-state consumption amounts, the direct
utility function is used to compute marginal utilities for consumption in
each time-state. Given those time-state marginal utilities, each asset’s time-
state pay-offs are used to compute the net marginal utility of another
planned share purchase of the asset. Any contingent trade with a positive
net marginal utility whose trade size can be increased (not against upper
bounds on trade) is a candidate for a ‘portfolio weight’ increase. Similarly,
any contingent trade with a negative net marginal utility whose trade size
can be decreased (not against lower bounds on trade) is a candidate for a
portfolio weight decrease.

Given these directions for portfolio improvement, a new trading strat-
egy, w, is considered. (The actual selection of the new trading strategy will
be discussed later.) The same loop described is repeated. Consumption
plans and marginal utilities are recomputed, followed by trades’ marginal
utilities, and a new trading strategy is selected. As in Section 2, the process
ends when net marginal utilities for all trades are equal (to zero in this
set-up), excepting trades with negative marginal utilities that cannot be
decreased and trades with positive marginal utilities that cannot be
increased.

Note that aside from possible upper and lower bounds, the choices of
sizes of trades are unconstrained, since the costs of investment are already
included as negative pay-offs. Increased funds required may be viewed
as reducing consumption in the time-state when funds are required.
Imposition of infinite marginal utility for zero or negative consump-
tion makes it non-optimal to invest more wealth than one has in any
time-state.

The principal choice available for minimizing computation time is in
the updating of the trading strategy or portfolio vector, w. Some updating
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techniques are considerably more efficient than others.5 Since PCs are
widely used and the computation times involved are small enough, the
hope of more widespread teaching and usage of multiperiod optimization
models in finance seems a reasonable one.

Finding the most efficient change in a single trade’s size requires con-
sideration of the entire pay-off matrix, since pay-offs on different securities
are correlated. Furthermore, in the intertemporal problem, many trades
transfer wealth between the same two dates and states, which shows up in
the pay-off matrix of Table 1 as two trade columns having zeros in the same
rows of the pay-off matrix. For example, a riskless bond and a stock both
held from time 0 to time 1 are clearly uncorrelated, but are significant
substitutes, since both transfer wealth intertemporally over the same time
period. Thus, in optimizing for the intertemporal problem, many securities
that are not statistically highly correlated must be treated in computational
design as if they are very highly correlated.

The problem with considering the entire pay-off matrix in choosing
the optimal trade updates is that the pay-off matrix should be viewed as a
huge matrix for many interesting problems. For example, having four
branches at each node for ten time periods gives over a million possible
states in the tenth period, since 410¼ 1,048,576. Thus, it appears compu-
tationally prudent not to consider the entire pay-off matrix in selecting
trade updates at each iteration.

If one starts simply by intending to change only one trade size at each
iteration, which trade should be changed and by how much (ignoring the
intercorrelations among trades)? To answer this, first one should look at
the improvement in expected utility of lifetime consumption that a unit
change in trade causes. This is given for each trade by its computed net
(expected) marginal utility, given the current consumption plan. Trade i’s
net marginal utility is:

MUi ¼
X

t

X
s
Xi

ts�ts�uutsðctsÞð5Þ

Let the time-states’ probabilities multiplied by their marginal utilities for
consumption (�ts úts) be stacked in a vector corresponding to the time-state
rows of the pay-off matrix, and let that S� 1 vector be denoted Uc, which
is a function of c. That vector will be called the vector of marginal utilities
for consumption in the various time-states. Readers should understand

5 For example, in an early application, optimal updating of trades one swap at a time reduced
computation time by 90% over a naive, non-optimized updating method. That computation time
was then reduced by another 75% with an optimal updating of two trades simultaneously at each
iteration. Using GAUSS, the same technique solved the problem in one quarter of that time. The
iterative process was stopped when the investor’s shadow price for all trades was within .01% of
zero. For example, this would happen when all investments that cost $100.00 (in present value) had
shadow values between $99.99 and $100.01. That tolerance can be made as small as is desired, but
computation time gets larger.
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that probabilities are included (which Hirshleifer (1970, Chapter 8) calls a
‘util-prob’ notation). Given that definition, the 1�N vector of trades’ net
marginal utilities, MU, can be expressed as:

MU ¼ UUcXð6Þ

In choosing the optimal update, trades with positive net marginal
utilities that are at their upper bounds should be ignored, since the direc-
tion of improvement is infeasible. Similarly, trades with negative marginal
utilities that are at their lower bounds should be ignored. Of those trades
remaining, the largest expected utility improvement per unit trade is given
by the trade with the largest absolute value of net marginal utility. If that
trade has a negative marginal utility, then its size should be reduced; if
positive, the trade size should be increased.

To find the optimal size of the trade change, one can rely on Sharpe’s
point that changing the scale of a trade is subject to diminishing returns,
due to the assumed diminishing marginal utility of consumption in each
time-state. As a trade transfers consumption from one set of time-states to
another set, those time-states with increased consumption have lowered
marginal utilities, whereas time-states with decreased consumption have
increased marginal utilities. Of course, these marginal utility changes are
precisely related to the sizes and signs of the trade’s pay-offs, so that the
net marginal utility of the trade moves toward zero as the trade size is
moved in the correct direction. Obviously, the rate at which marginal
utility of a trade goes towards zero depends upon the rates of change of
marginal utilities, i.e., the second derivatives of the utility functions.

The optimal size of a trade change is the size that (locally) drives
the net marginal utility of the trade to zero on the next iteration, based
upon the new consumption plan. Let dwi be the change in the size of
trade i, which may be positive or negative. For each time-state ts, the
new consumption level as a result of pay-off from (or cost of) that trade
change is:

cnewts ¼ coldts þ xitsdw
ið7Þ

for all time-states ts, where the trade’s pay-offs, fXi
tsg, are positive in some

time-states and negative in others. The new marginal utility of consump-
tion in each time-state is approximately:

U0 new
ts ¼ U0 old

ts þU00 old
ts xitsdw

ið8Þ

for all time-states ts. Based upon the new vector of marginal utilities
for consumption, the trade’s approximate marginal utility on the next
iteration can be computed. The trade increment, dwi, is chosen so that
the new marginal utility is zero. Let the vector xi be trade i’s column of
time-state pay-offs and let Ucc be the S� S diagonal matrix of second
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partials (no cross-partials).6 The new marginal utility for trade i is given by
(6) and (8). Solving for zero:

MUnew
i ¼ xi0½Uold

c þUold
cc x

iðdwiÞ� ¼ 0ð9Þ

) dwi ¼ �xi0Uold
c =½xi0Uold

cc x
i�

) dwi ¼ �MUold
i =½xi0Uold

cc xi� ðoptimal 1-trade updateÞ
ð10Þ

Since Ucc is negative and the contributing xi terms are squared in the
denominator, the trade change has the same sign as the net marginal utility
of the trade (as it should).

The optimal 1-trade update formula of (10) is directly analogous to
Sharpe’s optimal swap size (see footnote 4). The optimal trade increment
equals the net marginal utility improvement divided by a squared pay-off
term that is analogous to the variance of the swap.

The 1-trade updating approach works fine in solving the problem.
However, in checking the paths of these calculations, it is clear that ‘over-
shooting and reversals’ occur that are not very efficient. For example,
imagine what happens with a shift of funds at time zero from a bond to
a stock. First the bond holding might be reduced, which transfers con-
sumption intertemporally from time 1 to time 0. Then there is too much
consumption at time 0, so stocks are purchased to push consumption back
out to time 1, thereby effecting the switch from bonds to stocks at time 0.
It took 2 steps to accomplish what could be done in 1. Furthermore, as one
might imagine in a problem that acts as if it has a very high degree of
multi-collinearity across trades, there is a great amount of shifting of
weights back and forth among a few assets. So in fact it often might take
10 steps {trades 2,1,2,1,2,1,2,1,2,1} to make a switch of funds from trade 2
to trade 1. For that reason, it is important to derive the optimal adjust-
ments in two trades simultaneously.

The optimal updates of two trades’ sizes are found with a 3-step
procedure just like that for 1-trade updates. First, compute the new con-
sumption plan and time-states’ approximate new marginal utilities for
consumption in terms of the two unknowns that represent the sizes of
the new planned trades. Secondly, compute what the new marginal utilities
of trades will then be. Thirdly, solve for the trade sizes that give new
marginal utilities of zero for the two trades. This can be done uniquely

6 Actually, cross-partials should be in the matrix if time-complementarity of consumption is
nonzero, as in time-multiplicative utility models. However, the number of calculations of second
partials that are required at each iteration would be S2, instead of S, which is a major drawback
against a full matrix. With time-additive utility functions, all of those cross-partials are zeroes
anyway.
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by inversion of a 2� 2 matrix, since there are two equations that are linear
in the two unknown trade sizes.

With changes in two contingent trades, xi and xj, the new time-state
consumption plan and marginal utilities of consumption are:

cnewts ¼ coldts þ xitsdw
i þ xjtsdw

jð70Þ

for all time-states ts,

U0 new
ts ¼ U0 old

ts þU00 old
ts ½xitsdwi þ xjtsdw

j�ð80Þ

for all time-states ts.
The new marginal utilities for trades are then:

MUnew
i ¼ xi0½Uold

c þUold
cc ðxidwi þ xjdwjÞ� ¼ 0

MUnew
j ¼ xj0½Uold

c þUold
cc ðxidwi þ xjdwjÞ� ¼ 0

ð90Þ

Optimality conditions for the optimal trade increments, [dwi, dwj}, gives a
2� 2 system of linear equations:

ðxi0Uold
cc x

iÞdwi þ ðxi0Uold
cc x

jÞdwj ¼ MUold
i

ðxj0Uold
cc x

iÞdwi þ ðxj0Uold
cc x

jÞdwj ¼ MUold
j

ð11Þ

Letting A be the 2� 2 matrix of coefficients in (11), the solution is:

dw ¼ �A�1 MUold ðoptimal 2-trade and n-trade updateÞð12Þ

Upon reflection, one sees that (12) is also the general solution set for
any number (N) of simultaneous trade updates, with A appropriately
expanded to N�N and with MUold expanded to N� 1. Note that the
diagonal of the coefficient matrix A is uniformly negative, so one’s
intuition that high marginal utility trades should be increased is the typical
result of (12). However, large correlations with other trades updated can
reverse the optimal direction, as one might expect.

5. Examples of Optimal Dynamic Trading Strategies

This section presents examples of solutions for optimal dynamic con-
sumption and trading strategies. The illustrations considered here are
chosen to illustrate the principles of intertemporal consumption and port-
folio theory in this model. In particular, as described, optimal responses of
individuals’ portfolios to shifts in investment opportunities and to income
risk are considered. Consumption policies are examined to verify the
predictions of optimal responses for individuals with different degrees of
relative risk aversion. Finally, an example is presented that shows sensible
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portfolio strategies for the multiperiod borrowing and lending problem.
Divergent borrowing and lending rates are examined, with prospective
income streams and initial wealths that correspond to typical views of
young and old investors.

For the first illustration, the contingent trade matrix used is in Table 4,
which is identical to that described earlier in Figure 1 and Table 1, but is
just normalized by putting pay-offs on a return-per-dollar-invested basis.
By doing this, the optimal portfolios that are found (Table 5, described
shortly) all represent the total funds (dollars) contingently invested in each
trade. The uncertain income stream used is the one described earlier in
Table 3 for the automobile firm manager. Income fluctuates substantially
and directly with stock prices, and inversely with interest rates. A corres-
ponding certain income stream, which pays the same expected income at
each date as the uncertain stream, is also used. It is helpful in illustrating
consumption and portfolio strategies’ responses to more pure shifts in
opportunities, without having the confounding wealth effects of a volatile
income. Also, by comparison of optimal strategies with and without
stochastic income, Mayers’ (1972) optimal portfolio responses to ‘non-
marketable income’ are verified.

In intertemporal problems, it is clear that individuals with different
utility functions will have different consumption and portfolio strategies.
Thus, it should not surprise anyone that utility functions must be specified
to compute the optimal strategies. However, as noted earlier, the form of
the utility function is essentially unrestricted, as long as equations for
computing marginal utilities (uc> 0) and their changes (ucc< 0) can be
written. Utility functions may change over time and in different states of
the world. The specific utility functions examined here are pure power
utility functions with constant relative risk aversion equal to RRA and
with a pure rate of time preference equal to �. Mathematically, this utility
function and its partials are:

u¼Ke:�tc1�RRA
ts ; whereRRA>;K>0 if RRA<1;K<0otherwise:

uc¼MU¼Kð1�RRAÞe:�tc�RRA
ts ;

ucc¼�KðRRAÞð1�RRAÞe:�tc�RRA�1
ts

ð13Þ

These functions (multiplied by time-state probabilities) are used in the
computer program to evaluate consumption plans at different dates.
Equal probabilities at each branch are used in the illustrations, {1/4 for
each state at t¼ 1, 1/8 for each state at t¼ 2}. A time preference parameter
of �¼ 3% is used, with variations in that having predictable effects. A
higher time preference parameter causes individuals to shift to more con-
sumption earlier and less later, since � is a ‘discount rate for future utility of
consumption’.
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Given these preferences and income and investment opportunities, a
simple computer program that performs the optimization calculations in
the last section was used to solve six problems. The six problems were
generated by the two potential income paths in Table 4 (certain and
uncertain), times three different levels of relative risk aversion {0.5, 2.0,
and 4.0}. The optimal dynamic trading strategies for these 6 problems are
in Table 5, and the optimal consumption plans are in Table 6. Bear in
mind that these are only approximations to the optimal strategies, since
iterations stopped when the shadow prices for all feasible trades were
within 0.01% of zero.

Let us look first at the dynamic trading strategies of Table 5. A
number of points are interesting and consistent with one’s intuition.
First, at time 0, all investors shun stocks entirely and buy bonds. That is
not surprising, given that the mean return on stocks is 0 (8% less than
bonds), yet stocks have a standard deviation of 25%, while the bonds are
riskless. Note that states {(1,4), (1,1), and (1,2)} have the highest reward/
risk ratios for stocks, and those are the states that have the stock/bond mix
tilted most towards stocks. In both of the states with poor reward/risk
ratios {(0,1),(1,3)}, stocks receive small or zero weights. Since uncertain
income is tied somewhat to stocks’ returns, income risk alone is like
having a position in the stock market. Given this, it is not surprising
that investors spend less on stocks when income is uncertain than when
it is certain. In fact, with this uncertain income the very risk averse
individual (RRA¼ 4.0) never buys stocks. Just as dramatically, in states
{(1,1),(1,2)}, the stock-bond mix for the middle risk aversion person
(RRA¼ 2.0) flips from 100% stocks to 100% bonds with the addition of
this income risk. As expected, in all circumstances examined, the more
risk tolerant individuals buy more stocks than do those with less tolerance
for risk.

Next, let us look at the dynamic consumption plans (Table 6) and the
consumption/investment mix. First, from Table 5, it is seen that all indi-
viduals invest more when income is uncertain than when it is certain. The
greater their risk aversion, the greater the cutback in current consumption
in the presence of such income risk. Individuals set aside more funds in
investments to protect against potential adverse income fluctuations. In
fact, this income risk shift is largely a wealth effect, (rather than an
investment opportunity set effect), since individuals cannot invest more
or less in this income (endowment) stream. From the left half of Table 6, it
is seen that all individuals’ optimal consumption plans here are highly
correlated with their income streams. Thus, the shadow present value of
the uncertain income stream is less than that of the riskless income stream,
since it has the same expected payoffs at each date, but has positive
consumption risk. With effectively less real wealth when income is risky
like this, individuals consume less initially.

# Banca Monte dei Paschi di Siena SpA, 2004.
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The more risk averse an individual is, the lower the mean and the
lower the volatility of the consumption path, as shown by Breeden (1979,
Sec. 5). This effect is verified here, as seen by comparing the means and
standard deviations of consumption paths in Table 6.

As noted in Section 3 and is easily seen from Table 4, investment
opportunities in state (1,2) dominate opportunities in state (1,1), and oppor-
tunities in state (1,4) dominate those in state (1,3). Breeden (1986, Sec. 6)
showed that individuals more risk averse than the log (i.e., with RRA> 1)
consume more currently when investment opportunities improve, ceteris
paribus. This spreads the additional utility of good opportunities to con-
sumption at each date. In contrast, individuals who are more risk tolerant
than the log (i.e., those with RRA< 1), cut back current consumption and
increase investment to take advantage of the better investment opportun-
ities. The latter strategy leads to a higher mean lifetime consumption path
and to a higher variance of consumption about that path. To see these
effects, compare consumption in time-state (1,2) with that in time-state (1,1),
and compare consumption in (1,4) with that in (1,3). To keep differential
incomes from obscuring the effects, examine the panel where the income
path is certain. Note that wealth is the same in each pair of states, since the
S&P 500 is 1250 in (1,1) and (1,2) and is 750 in (1,3) and (1,4). The relatively
risk tolerant individual (RRA¼ 0.5) does curtail consumption in the ‘good
opportunities’ states and increases current consumption when the opportun-
ities are poor. The very risk averse person (RRA¼ 4.0) does the opposite,
smoothing the effects of the opportunity set into consumption at each date.

5.1. Borrowing and Leverage Strategies

One of the nicest features of Sharpe’s optimization approach is the ease
with which it handles limitations on short-sales, divergent borrowing and
lending rates, and limitations on long positions. All of these are handled by
the maximum and minimum quantities of trades that can be executed.
Different trades have different maximums and minimums. By disallowing
negative holdings of bonds and by representing borrowing by a positive early
cash flow followed by negative later cash flows, the existence of both riskless
borrowing and riskless lending at different rates can be modelled. As long as
the borrowing rate is greater than or equal to the lending rate, there is no
arbitrage. Of course, risky borrowing and risky lending can also be modeled.

Table 7 gives a new contingent trade matrix ‘B’, which represents a
3-date binomial trading set, {t¼ 0, 1, 2}. As a binomial (for simplicity), there
are only 7 (1þ 2þ 4) pay-off and investment nodes in the tree. At each
node, one has three possible trades – borrowing, buying bonds, and buying
stocks. Thus, with 3 trades at time 0 and at each of the two nodes at time 1,
there are a total of 9 contingent trades to consider. To illustrate different
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supplies and demands for borrowing and lending, three different income
paths are examined: (1) income for a wealthy (W0¼ $1 million) individual
with a fixed income of $100,000 per year; (2) income for a ‘typical young
MBA with a certain income’, who starts with an income of $50,000, but
knows that $100,000 will be earned next year and $200,000 in year 2; and
(3) income for a ‘young MBA with an uncertain income’, who has year 2
income that has a 50–50 chance of either being $320,000 or $80,000 in
year 2, and so has the same expected annual income as the certain MBA.
The uncertain MBA’s income is conditionally certain, in that if the stock
market is up in year 1, then the $320,000 income will be received in year 2.
If the market is down in year 1, then the MBA knows that bad times are
ahead and only $80,000 will be earned in year 2. Also note that the invest-
ment opportunity set is especially favourable for stocks in state (1,2),
dominating that in state (1,1) for stocks (although pure borrowers prefer
state (1,1)).

Table 8 shows the optimal trading strategies for the borrowing/lending
problem for individuals with different risk aversion and different income
paths. As expected, wealthy individuals who invest money for later con-
sumption tend to lend to the young MBAs. Furthermore, the more risk
averse among the wealthy lend more risklessly than do the more risk
tolerant wealthy. In fact, in this example, the most risk tolerant wealthy
people (RRA¼ 0.5) do not buy any bonds – just stocks. The wealthy in
this example never borrow. The more risk tolerant millionaires put more
money in the stock market, whereas those who are very risk averse put
more in Treasury bills. The young MBAs, who start with no wealth,
consume more than they earn and also borrow to invest in stocks (a
decadent group to be sure!). Even the young MBA who is most averse to
risk (RRA¼ 4.0) borrows from a rising future income to fund current
consumption, although very little is put into stocks by this person. Every-
one responds to the outstanding investment opportunities in the stock
market in state (1,2) by putting more funds into the market then than in
state (1,1), despite their larger wealths in state (1,1).

Let us now compare the young MBA’s strategy with the income
uncertainty modelled with that of the certainty case. At time 1, the MBA
knows what next year’s income will be. If the stock market is high at time
1, the income next year will be high, whereas if the market is low at time 1,
income at time 2 is low. One hopes to see and does see that borrowing is
reduced in the situation where next year’s income is sure to be low (1,2).
One should not expect to reduce a low future consumption level further to
increase a current normal consumption level. Almost all of the borrowing
done in that low future income situation is used to finance investment in
stocks, which present excellent, but risky prospects. Thus, the low income
to be received at time 2 is used largely for time 2 consumption. On the
other hand, when income is known to be high next year (1,1), the MBA
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borrows against it to increase consumption at time 1, while maintaining a
high consumption level at time 2 (an income smoothing strategy).

Clearly, many other interesting examples could be presented. How-
ever, this paper mainly serves to introduce a useful and theoretically sound
optimization technique. The hope is that readers will explore many more
examples. Section 6 examines some of the limitations of the technique and
some extensions of it.

6. Limitations, Extensions and Embellishments

6.1. Utility Functions with Time Complementarity

There are a number of additional extensions of the model and examples
of it that can fruitfully be examined. For example, a significant point is that
utility functions with time complementarity can be used in this framework.
The principal differences between time-multiplicative and time-additive util-
ity functions are in the expressions for marginal utilities and second partials
and cross-partials of utility with respect to time-state consumption. In the
time-multiplicative case, the consumption level in one particular time-state
affects the marginal utility and its changes in other time-states along the
paths that go through the particular time-state examined. Also, in Equation

Table 8: Optimal Dynamic Trading Strategies With Leverage (RBorr>RLend)

Stock Bond Borrow Stock Bond Borrow Stock Bond Borrow
0,1 0,1 0,1 1,1 1,1 1,1 1,2 1,2 1,2

Opportunity
Set B:
Mean Return 15.00% 7.00% 11.00% 10.00% 5.00% 9.00% 30.00% 10.00% 15.00%
Std. Dev’n 35.00% 0.00% 0.00% 30.00% 0.00% 0.00% 50.00% 0.00% 0.00%
Reward/Risk 0.23 &

0.11
0.17 &

0.03
0.40 &

0.30

Wealthy,
Fixed Income

(Dollars invested in each trade)

RRA¼ 0.5 634,800 0 0 483,804 0 0 572,625 0 0
RRA¼ 2.0 295,830 287,497 0 137,903 229,999 0 176,443 84,830 0
RRA¼ 4.0 158,065 422,016 0 63,995 272,392 0 88,752 186,600 0

Young MBA
(certain Y)
RRA¼ 0.5 112,962 0 156,200 34,389 0 76,170 157,343 0 227,524
RRA¼ 2.0 27,330 0 84,806 6,656 0 78,320 35,516 0 113,466
RRA¼ 4.0 10,878 0 70,285 3,212 0 79,809 17,476 0 95,271

Young MBA
(uncertain Y)
RRA¼ 0.5 0 0 33,040 44,473 0 157,164 109,481 0 106,385
RRA¼ 2.0 0 0 36,422 10,297 0 132,416 22,749 0 30,860
RRA¼ 4.0 0 0 32,311 5,181 0 126,364 11,422 0 18,176
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10, the matrix of second partial derivatives of utility with respect to time-
state consumption is more full than the diagonal matrix of the time-additive
case (see footnote 5). Still, the changes described are just in the formulae for
computing values – the general optimization technique presented handles
this case without modification.

6.2. Arbitrage Trading and Option Creation Strategies

Although it has not been illustrated, it should be clear that if there are
arbitrage opportunities, they will be identified and exploited to the max-
imum degree possible. No matter what the utility function is, everyone
likes a true arbitrage opportunity – no net investment, no risk of loss, non-
negative returns in all time-states, and positive in at least one. Since an
optimal dynamic trading strategy is found, even very complicated arbi-
trages are identified, possibly involving manoeuvres in and out of many
different assets at different points in time. Similarly, ‘quasi-arbitrage’
opportunities, (which are assumed to be abnormally profitable strategies,
given their very low risks), are likely to be optimal for most utility func-
tions, and so are likely to be identified, almost regardless of the utility
function used. A utility representation with very high risk aversion (such as
a pure power function with a large negative exponent) can be used to
identify only the lowest risk strategies.

6.3. The Major Limitation: Too Many Branches

The most obvious significant limitation of the general technique is the
fact that the number of time-states and contingent trades can quickly
become so huge as to overwhelm both computers and analysts. For
example, binomial branching at each year for 30 years gives 1 billion
(230) states in the 30th year! The nice, forward-looking tree structure that
is such an intuitive advantage of this way of modeling becomes compu-
tationally infeasible with such huge trees. Still, probably the largest benefits
of laying out dynamic consumption and trading strategies are in the first
few years, as our abilities are suspect for seeing much of the economic
structure beyond that. Thus, the most productive way to use the technique
is to just attempt to model the first few years really well, rather than to get
bogged down with huge numbers of very speculative trading opportunities
in the distant future.

In carefully modelling only the first few years of what is truly a 30–50-
year consumption and investment problem, a terminal indirect utility
function for wealth carried into years past the last date can sometimes be
used. For some tractable utility functions (such as some in the HARA
class) and probabilistic assumptions for distant returns, solutions can be
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found. Without a terminal utility of wealth, the optimization program
would spend all wealth on consumption only in the first few years and
would ignore income that is likely to be earned beyond the final date of
analysis. For older people such an error would lead the program to too
much current consumption, whereas for young people the error would
probably be too little recommended current consumption.

7. Conclusion

The insights that have been developed in the finance literature about
optimal dynamic consumption and portfolio rules have not been used
much in practice. The likely reason for this is the difficulty of computing
solutions to these complicated optimization problems. This paper com-
bined an optimization technique developed by Sharpe with a new, exact
characterization of the pay offs from dynamic trading strategies to find a
simple solution method for optimal dynamic consumption and portfolio
strategies. To illustrate the potential for widespread use, the technique was
programmed and used on a personal computer to solve some interesting
consumption, investment and income problems.

A number of examples were examined to verify the predictions of the
theory about the nature of optimal consumption and portfolio rules. Of
course, since these theoretical results have been around for a few years,
any errors would have already been discovered. Thus, it is not surprising
that the calculations ‘verify the predictions of the theory’. The calculations
really are just calculations of the formulae developed by theorists. Still, it is
very useful to find that intuitively plausible optimal strategies can be easily
computed for many problems that would take a long time to solve with the
usual dynamic programming methods.

The technique appears to be rather general, in that it handles such
things as income risk, divergent borrowing and lending rates, minimum
and maximum trade positions, utility functions with time-complementarity,
and allows almost any set of probability beliefs and risk aversion.
Arbitrage opportunities can also be identified with the technique.
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