Set 2: Multiple-Choice Questions on Limits and Continuity

1.
$$\lim_{x\to 2} \frac{x^2-4}{x^2+4}$$
 is

- (A) 1 (B) 0 (C) $-\frac{1}{2}$ (D) -1 (E) ∞

2.
$$\lim_{x\to\infty} \frac{4-x^2}{x^2-1}$$
 is

- (A) 1 (B) 0 (C) -4 (D) -1 (E) ∞

3.
$$\lim_{x\to 3} \frac{x-3}{x^2-2x-3}$$
 is

- (A) 0 (B) 1 (C) $\frac{1}{4}$ (D) ∞ (E) none of these

4.
$$\lim_{x\to 0} \frac{x}{x}$$
 is

- (A) 1 (B) 0 (C) ∞ (D) -1 (E) nonexistent

5.
$$\lim_{x\to 2} \frac{x^3-8}{x^2-4}$$
 is

- **(A)** 4 **(B)** 0 **(C)** 1 **(D)** 3 **(E)** ∞

6.
$$\lim_{x \to \infty} \frac{4 - x^2}{4x^2 - x - 2}$$
 is

- (A) -2 (B) $-\frac{1}{4}$ (C) 1 (D) 2 (E) nonexistent

7.
$$\lim_{x \to \infty} \frac{5x^3 + 27}{20x^2 + 10x + 9}$$
 is

- (A) $-\infty$ (B) -1 (C) 0 (D) 3 (E) ∞

8.
$$\lim_{x\to\infty} \frac{3x^2+27}{x^3-27}$$
 is

- (A) 3 (B) ∞ (C) 1 (D) -1 (E) 0

9.
$$\lim_{x\to\infty}\frac{2^{-x}}{2^x}$$
 is

- (A) -1 (B) 1 (C) 0 (D) ∞ (E) none of these

38

The graph of $y = \frac{x^2 - 9}{3x - 9}$ has

(B) a horizontal asymptote at $y = \frac{1}{3}$ (A) a vertical asymptote at x = 3

(D) an infinite discontinuity at x = 3a removable discontinuity at x = 3

(E) none of these

The function $f(x) = \begin{cases} x^2/x & (x \neq 0) \\ 0 & (x = 0) \end{cases}$

(A) is continuous everywhere

(B) is continuous except at x = 0

has a removable discontinuity at x = 0

(D) has an infinite discontinuity at x = 0

(E) has x = 0 as a vertical asymptote

17. $\lim_{x\to 0} \frac{\sin x}{x^2 + 3x}$ is

(A) 1 (B) $\frac{1}{3}$ (C) 3 (D) ∞ (E) $\frac{1}{4}$

- 18. $\lim_{x\to 0} \sin \frac{1}{x}$ is
 - (A) ∞
- **(B)** 1
- (C) nonexistent
- **(D)** -1
- (E) none of these
- 19. Which statement is true about the curve $y = \frac{2x^2 + 4}{2 + 7x 4x^2}$?
 - (A) The line $x = -\frac{1}{4}$ is a vertical asymptote.
 - **(B)** The line x = 1 is a vertical asymptote.
 - (C) The line $y = -\frac{1}{4}$ is a horizontal asymptote.
 - (D) The graph has no vertical or horizontal asymptotes.
 - (E) The line y = 2 is a horizontal asymptote.

Questions 20 through 24 are based on the function f shown in the graph and defined below:

- $20. \quad \lim_{x\to 2} f(x)$
 - (A) equals 0
- (B) equals 1
- (C) equals 2

- (D) does not exist
- (E) none of these
- **21.** The function f is defined on [-1,3]
 - (A) if $x \neq 0$
- **(B)** if $x \neq 1$
- (C) if $x \neq 2$

- **(D)** if $x \neq 3$
- (E) at each x in [-1,3]
- 22. The function f has a removable discontinuity at
 - **(A)** x = 0
- **(B)** x =
- (C) x = 2
- **(D)** x = 3
- (E) none of these
- 23. On which of the following intervals is f continuous?
 - $(\mathbf{A}) \quad -1 \le x \le 0$
- **(B)** 0 < x < 1
- (C) $1 \le x \le 2$

- $(\mathbf{D}) \quad 2 \le x \le 3$
- (E) none of these

24. The function f has a jump discontinuity at

(A)
$$x = -1$$

(B)
$$x = 1$$

(C)
$$x = 2$$

(D)
$$x = 3$$

(E) none of these

25.
$$\lim_{x \to \infty} \frac{2x^2 + 1}{(2 - x)(2 + x)}$$
 is

$$(\mathbf{A})$$
 -4

$$(\mathbf{B})$$
 -2

$$\mathbf{C}$$
) 1

$$(\mathbf{D})$$
 2

(A) -4 (B) -2 (C) 1 (D) 2 (E) nonexistent

26.
$$\lim_{x\to 0} \frac{|x|}{x}$$
 is

(A) 0 (B) nonexistent (C) 1 (D) -1 (E) none of these

27.
$$\lim_{x\to\infty} x \sin\frac{1}{x}$$
 is

(A) 0 (B)
$$\infty$$
 (C) nonexistent (D) -1 (E) 1

(D)
$$-1$$

28.
$$\lim_{x\to\pi} \frac{\sin(\pi-x)}{\pi-x}$$
 is

(A) 1 (B) 0 (C) ∞ (D) nonexistent (E) none of these

29. Let
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x \neq 1 \\ 4 & \text{if } x = 1 \end{cases}$$

Which of the following statements is (are) true?

I. $\lim_{x \to 1} f(x)$ exists. II. f(1) exists.

III. f is continuous at x = 1.

(A) I only (B) II only (C) I and II

(D) none of them (E) all of them

30. If
$$\begin{cases} f(x) = \frac{x^2 - x}{2x} \text{ for } x \neq 0, \\ f(0) = k, \end{cases}$$

and if f is continuous at x = 0, then k =

(A)
$$-1$$
 (B) $-\frac{1}{2}$ (C) 0 (D) $\frac{1}{2}$ (E) 1

31. Suppose
$$\begin{cases} f(x) = \frac{3x(x-1)}{x^2 - 3x + 2} \text{ for } x \neq 1, 2, \\ f(1) = -3, \\ f(2) = 4. \end{cases}$$

(A) except at x = 1

(B) except at x = 2 **(C)** except at x = 1 or 2

(D) except at x = 0, 1, or 2

(E) at each real number

32. The graph of $f(x) = \frac{4}{x^2 - 1}$ has

- (A) one vertical asymptote, at x = 1
- the y-axis as vertical asymptote **(B)**
- the x-axis as horizontal asymptote and $x = \pm 1$ as vertical asymptotes **(C)**
- two vertical asymptotes, at $x = \pm 1$, but no horizontal asymptote (\mathbf{D})
- no asymptote **(E)**

33. Suppose $\lim_{x \to -3^-} f(x) = -1$, $\lim_{x \to -3^+} f(x) = -1$, and f(-3) is not defined. Which of the following statements is (are) true?

- I. $\lim_{x \to -3} f(x) = -1$. II. f is continuous everywhere except at x = -3.
- III. f has a removable discontinuity at x = -3.
- (A) None of them
- **(B)** I only
- (C) III only

- **(D)** I and III only
- (E) All of them

34. The graph of $y = \frac{2x^2 + 2x + 3}{4x^2 - 4x}$ has

- a horizontal asymptote at $y = +\frac{1}{2}$ but no vertical asymptotes
- no horizontal asymptotes but two vertical asymptotes, at x = 0 and x = 1
- a horizontal asymptote at $y = \frac{1}{2}$ and two vertical asymptotes, at x = 0 and x = 1
- a horizontal asymptote at x = 2 but no vertical asymptotes
- a horizontal asymptote at $y = \frac{1}{2}$ and two vertical asymptotes, at $x = \pm 1$

35. Let $f(x) = \begin{cases} \frac{x^2 + x}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$.

Which of the following statements is (are) true?

- $\lim_{x\to 0} f(x)$ exists. III. f is continuous at x = 0. I. f(0) exists. Π.
- (C) I and II only **(B)** II only (A) I only
- (D) all of them (E) none of them

36. If $y = \frac{1}{2 + 10^{\frac{1}{x}}}$, then $\lim_{x \to 0} y$ is

- (A) 0 (B) $\frac{1}{12}$ (C) $\frac{1}{2}$ (D) $\frac{1}{2}$ (E) nonexistent
- 37. $\lim_{x\to 0} \sqrt{3 + \arctan \frac{1}{x}}$ is
 - (A) $-\infty$ (B) $\sqrt{3-\frac{\pi}{2}}$ (C) $\sqrt{3+\frac{\pi}{2}}$ (D) ∞ (E) none of these
 - (E) none of these

42

1.	В	9.	C	17.	В	24.	В	31.	В
2.	D	10.	D	18.	C	25.	B	32.	C
3.	C	11.	D	19.	Α	26.	\mathbf{B}	33.	D
4.	Α	12.	E	20.	Α	27.	E	34.	C
5.	D	13.	В	21.	E	28.	Α	35.	D
6.	В	14.	C	22.	C	29.	C	36.	E
7.	Α	15.	C	23.	В	30.	В	37.	E
8.	E	16.	Α						

- 1. B. The limit as $x \to 2$ is $0 \div 8$.
- 2. D. Use the Rational Function Theorem (pages 30 and 31). The degrees of P(x) and Q(x) are the same.
- 3. C. Remove the common factor x 3 from numerator and denominator.
- **4.** A. The fraction equals 1 for all nonzero x.
- 5. D. Note that $\frac{x^3-8}{x^2-4} = \frac{(x-2)(x^2+2x+4)}{(x-2)(x+2)}$.
- **6.** B. Use the Rational Function Theorem.
- 7. A. Use the Rational Function Theorem.
- **8.** E. Use the Rational Function Theorem.
- **9.** C. The fraction is equivalent to $\frac{1}{2^{2x}}$; the denominator approaches ∞ .
- 10. D. Since $\frac{2^{-x}}{2^x} = 2^{-2x}$, therefore, as $x \to -\infty$, the fraction $\to +\infty$.
- **11.** D. See Figure N2–1 on page 23.
- **12.** E. Note, from Figure N2–1, that $\lim_{x \to -2^{-}} [x] = -3$ but $\lim_{x \to -2^{-}} [x] = -2$.
- 13. B. Graph $\tan^{-1} x$ on your calculator in $[-5, 5] \times [-\frac{\pi}{2}, \frac{\pi}{2}]$.
- **14.** C. As $x \to \infty$, the function $\sin x$ does, indeed, oscillate between -1 and 1.
- 15. C. Since $\frac{x^2-9}{3x-9} = \frac{(x-3)(x+3)}{3(x-3)} = \frac{x+3}{3}$ (provided $x \ne 3$), y can be defined to be equal to 2 at x = 3, removing the discontinuity at that point.
- **16.** A. Note that $\frac{x^2}{x} = x$ if $x \neq 0$ and that $\lim_{x \to 0} f = 0$.
- 17. B. Note that $\frac{\sin x}{x^2 + 3x} = \frac{\sin x}{x(x+3)} = \frac{\sin x}{x} \cdot \frac{1}{x+3} \to 1 \cdot \frac{1}{3}$.

- 18. C. As $x \to 0$, $\frac{1}{x}$ takes on varying finite values as it increases. Since the sine function repeats, $\sin \frac{1}{x}$ oscillates, taking on, infinitely many times, each value between -1 and 1. The calculator graph of $Y_1 = \sin(1/X)$ exhibits this oscillating discontinuity at x = 0.
- 19. A. Note that, since $y = \frac{2x^2 + 4}{(2-x)(1+4x)}$, both x = 2 and $x = -\frac{1}{4}$ are vertical asymptotes. Also, $y = -\frac{1}{2}$ is a horizontal asymptote.
- **20.** A. $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = 0.$
- **21.** E. Verify that f is defined at x = 0, 1, 2, and 3 (as well as at all other points in [-1,3]).
- 22. C. Note that $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} f(x) = 0$. However, f(2) = 1. Redefining f(2) as 0 removes the discontinuity.
- 23. B. The function is not continuous at x = 0, 1, or 2.
- **24.** B. $\lim_{x \to 1^{-}} f(x) = 0 \neq \lim_{x \to 1^{+}} f(x) = 1.$
- 25. B. $\frac{2x^2+1}{(2-x)(2+x)} = \frac{2x^2+1}{4-x^2}$. Use the Rational Function Theorem (pages 30 and 31).
- **26.** B. Since |x| = x if x > 0 but equals -x if x < 0, $\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{+}} \frac{x}{x} = 1$ while $\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x} = -1$.
- 27. E. Note that $x \sin \frac{1}{x}$ can be rewritten as $\frac{\sin \frac{1}{x}}{\frac{1}{x}}$ and that, as $x \to \infty$, $\frac{1}{x} \to 0$.
- **28.** A. As $x \to \pi$, $(\pi x) \to 0$.
- 29. C. Since f(x) = x + 1 if $x \ne 1$, $\lim_{x \to 1} f(x)$ exists (and is equal to 2).
- 30. B. $f(x) = \frac{x(x-1)}{2x} = \frac{x-1}{2}$, for all $x \ne 0$. For f to be continuous at x = 0, $\lim_{x \to 0} f(x)$ must equal f(0). $\lim_{x \to 0} f(x) = -\frac{1}{2}$.
- 31. B. Only x = 1 and x = 2 need be checked. Since $f(x) = \frac{3x}{x-2}$ for $x \ne 1, 2$, and $\lim_{x \to 1} f(x) = -3 = f(1)$, f is continuous at x = 1. Since $\lim_{x \to 2} f(x)$ does not exist, f is not continuous at x = 2.
- 32. C. As $x \to \pm \infty$, $y = f(x) \to 0$, so the x-axis is a horizontal asymptote. Also, as $x \to \pm 1$, $y \to \infty$, so $x = \pm 1$ are vertical asymptotes.
- 33. D. No information is given about the domain of f except in the neighborhood of x = -3.
- 34. C. As $x \to \infty$, $y \to \frac{1}{2}$; the denominator (but not the numerator) of y equals 0 at x = 0 and at x = 1.
- 35. D. The function is defined at 0 to be 1, which is also $\lim_{x\to 0} \frac{x^2+x}{x} = \lim_{x\to 0} (x+1)$.

- **36.** E. As $x \to 0^+$, $10^{\frac{1}{x}} \to \infty$ and therefore $y \to 0$. As $x \to 0^-$, $\frac{1}{x} \to -\infty$, so $10^{\frac{1}{x}} \to 0$ and therefore $\to \frac{1}{2}$. Because the two one-sided limits are not equal, the limit does not exist.
- 37. E. As $x \to 0^-$, arctan $\frac{1}{x} \to -\frac{\pi}{2}$, so $y \to \sqrt{3 \frac{\pi}{2}}$. As $x \to 0^+$, $y \to \sqrt{3 + \frac{\pi}{2}}$. The graph has a jump discontinuity at x = 0. (Verify with a calculator.)