Calculus BC - 2021 AP Live Review Session 5 Examining Differential Equations and Logistics

- **1**. After completing the 2020 AP Exams, students uploaded their responses to be scored. Let *E* represent the total number of AP Calculus responses, in thousands, that have been uploaded *t* minutes after testing is complete. At time t = 10 minutes, 75 thousand responses have been uploaded and E'(10) = 18.
 - (a) Write an equation of the line tangent to the graph of *E* at t = 10. Use the tangent line to approximate *E*(13).

(**b**) Yoangel believes that *E* can be modeled by the logistic equation y = R(t) where $\frac{dR}{dt} = \frac{8}{25}R\left(1 - \frac{R}{300}\right)$ and R(10) = 75. According to this model, what is the rate, in thousands of responses per minute, at the moment when responses are being uploaded fastest?

(c) According to the model *R* in part B, is the rate that responses are uploaded increasing or decreasing at time t = 10? Give a reason for your answer.

(d) For $0 \le t \le 30$ minutes, Emma believes that *E* can be modeled by the function y = U(t), where $\frac{dU}{dt} = \frac{2}{25}U$ and U(10) = 75 (*U* is measured in thousands of responses) Find the particular solution y = U(t). According to this model, how many responses have been uploaded at time t = 13?

- **2**. For $0 \le t \le 30$ minutes, the number of cars that have exited a parking garage can be modeled by the function y = L(t) which satisfies the differential equation $\frac{dL}{dt} = \frac{2}{15}(280 2L)$. At time t = 0, there are 435 cars in the garage and no cars have exited the garage.
- (a) Sketch the solution curve to the differential equation $\frac{dL}{dt} = \frac{2}{15}(280 2L)$ through the point (0, 0).

(**b**) Use separation of variables to find the particular solution y = L(t) to the differential equation above with condition L(0) = 0.

(c) For $0 \le t \le 30$ minutes, cars enter the parking garage at a rate modeled by $E(t) = 6.7 - 1.2 \cos\left(\frac{\pi t}{15}\right)$. Using your solution from part (b), find the number of cars in the parking garage at time t = 15.

(d) For $0 \le t \le 30$ minutes, find the minimum number of cars in the parking garage. Justify your answer.

1. Which of the following could be the equation of the differential equation that satisfies the slope field given in the figure above?

(A)
$$\frac{dy}{dx} = -\frac{x^2}{y}$$
 (B) $\frac{dy}{dx} = -\frac{x}{y}$ (C) $\frac{dy}{dx} = x - y$ (D) $\frac{dy}{dx} = \frac{y}{x}$

- **2**. Which of the following functions satisfies the differential equation y'' 2y' + 10 = 0?
 - (A) $y = e^{2x} + 10$
 - (B) $y = e^{2x} + 10x$
 - (C) $y = 2e^{2x} + 5x$
 - (D) $y = 5e^{2x}$
- **3**. A rumor is spreading that Trevor Packer is going to join Bryan and Tony for a guest appearance on AP Live. The total number of people that have heard the rumor *R*, in thousands, at time *t* hours follows a logistic model. Which of the following could be the logistic differential equation for the rate that the rumor is spreading at time *t*?

(A)
$$\frac{dR}{dt} = 10t \left(1 - \frac{t}{4000}\right)$$

(B) $\frac{dR}{dt} = 10R \left(1 - \frac{t}{4000}\right)$
(C) $\frac{dR}{dt} = 4000t - 10t^2$
(D) $\frac{dR}{dt} = 4000R - 10R^2$

4. The function y = f(x) satisfies the logistic differential equation $\frac{dy}{dx} = 6y\left(1 - \frac{y}{20}\right)$. It is known that f(4) = 10.

$$\lim_{x \to 4} \frac{f(x) - 4x + 6}{f'(x) - 2x^2 + 2}$$
 is
(A) $-\frac{13}{8}$ (B) 0 (C) $\frac{96}{5}$ (D) nonexistent

5. Let y = H(t) be the particular solution to the differential equation $\frac{dH}{dt} = \frac{1}{10}(7 - 5H)$. Which of the following gives the value of $\frac{d^2H}{dt^2}$ at the point H(2) = 3? (A) $-\frac{1}{2}$ (B) $\frac{2}{5}$ (C) $\frac{3}{2}$ (D) 4