'RISK ASSESSMENT' QC METRICS MADE EASY

Verification of Statistics used in an Interactive PDF Application for Measuring Analytical Process Quality

Daniel W. Leighton, MS,MT(ASCP),HCLD(ABB),CLB dan@smartlabtools.com

Preface:

- During the past years, I've attended several very excellent QC seminars, and collected numerous articles that discuss use of various tools or metrics for improving Clinical Laboratory QC processes. Calculations are explained along with descriptive charts and graphs. The user is then left to his own means to put this knowledge to good use.
- As a personal challenge, I took on creating a SmartLabTool to simplify those calculations, and make it available to the laboratory community.
- In order to validate the math, I needed to demonstrate that I could emulate math shown by the 'Experts'.

The Math is not always obvious

- The math I've used is shown on the next slide.
- Not everyone does the math the same way, as you will see in the examples shown.
- The following slides contain examples of use for the various metrics.
- The math is best reproduced when starting with the raw data.., of which I found few examples on the web.
- In some cases, I needed to take the math calculations to 4 decimal places, as this made a difference when reproducing others work.

the second second by the second structure the back second second second second second second second second seco	
Parameter	Terminology / Calculations
Mean(True)	As Published, Insert, Peer, Target
Mean(Obsv)	Observed Lab Mean from between day testing
SD(Obsv)	Lab Standard Deviation from between day testing
%CV	100 * SD / Mean(True), or ? 100 * SD/ Mean(Obsv)
Bias	Mean(True) – Mean(Obsv)
%Bias	100 * [(Mean(Obsv) – Mean(True)] / Mean(True) or ? 100 * [Mean(Obsv) – Mean(True)] / Mean(Obsv)
%TEa	Total Allowable Error (ATE), as with CLIA PT %CV
Imprecision	[SD(Obsv) * Zp] Zp is '2' for 2SD Limit
TE or TAE	Total Analytic Error = (Bias + Imprecision)
TEa or ATE	Total Error Allowed = Mean(True) * CLIA PT %CV
TE/TEa	Ratio: <1.0 is Acceptable, 0.33 or less desired
ME units	Margin for $Error = (TEa - TE)$
ME in SD	Margin for $Error = (TEa - TE) / SD$
Critical Systematic Error (∆SEcrit)	[(%TEa - %Bias) / CV%] – 1.65
Sigma, Sigma-Metric	(%TEa - %Bias) / %CV
TEB(%)	Total Error Budget = (TE/TEa) * 100, 33% or less desired

A Completed Template

- The following 2 pages demonstrate use of the template.
- The data was taken from a clients monthly QC summary report for illustration purposes only.
- For Interpretation, You will want to consult multiple references to decide how to best utilize this tool in your laboratory. Some uses include:
 - Calculating Total Error and Comparing vs. Allowed Tolerance Limits
 - Monitoring Accuracy (bias) and CV% (imprecision)
 - For establishing QC Rules, and number of QC's to run
- Importantly consider the reference used for Total Allowable Error – Links to 3 sites for Allowable Error tables are on the 2nd page.

Smart LabToo	ls		Eva MA - A		e QC SS-II (Perf	orm	ance DC Eva	vs. A	Allow n Biol	able Rad Lo	Erro	r Lin 341.43	nits 03/15	4.3	Rese Rese	et Data
Complex Forms made	e Simple		o hann		O hou								,		ME	Z =	2.0
TEa Reference	Ctrl	Mean	Mean	SD	%CV	Bias Units	%Bias	Units	Units	%TEa	Units	Ratio	%TE	ME Units	SD ME	SEcrit	Sigma Metric
E2 - (CVb)	1	95.0	94.2	11.4	12.000	-0.80	0.8421	22.80	23.60	27.20	25.84	0.91	24.84	2.24	0.20	0.55	2.20
E2 - (CVb)	3	921.5	923.2	57	6.19	1.70	0.18	114.00	115.70	27.20	250.65	0.46	12.56	134.95	2.37	2.72	4.37
FERR - (CVb)	1	22.4	23.1	1.68	7.50	0.70	3.13	3.36	4.06	16.90	3.79	1.07	18.13	-0.27	-0.16	0.19	1.84
FERR - (CVb)	3	347	353	19.7	5.68	6.00	1.73	39.40	45.40	16.90	58.64	0.77	13.08	13.24	0.67	1.02	2.67
FOL - (CVb)	1	2.80	2.74	0.15	5.36	-0.06	2.14	0.30	0.36	39.00	1.09	0.33	12.86	0.73	4.88	5.23	6.88
FOL - (CVb)	3	13.45	13.1	0.61	4.54	-0.35	2.60	1.22	1.57	39.00	5.25	0.30	11.67	3.68	6.03	6.38	8.03
FSH - (CVb)	1	6.81	6.46	0.47	6.90	-0.35	5.14	0.94	1.29	21.20	1.44	0.89	18.94	0.15	0.33	0.68	2.33
FSH - (CVb)	3	38	37.6	1.97	5.18	-0.40	1.05	3.94	4.34	21.20	8.06	0.54	11.42	3.72	1.89	2.24	3.89
FT3 - (CVb)	1	2.29	2.31	0.09	3.93	0.02	0.87	0.18	0.20	11.30	0.26	0.77	8.73	0.06	0.65	1.00	2.65
FT3 - (CVb)	3	8.99	8.91	0.56	6.23	-0.08	0.89	1.12	1.20	11.30	1.02	1.18	13.35	-0.18	-0.33	0.02	1.67
FT4 - (CVb)	1	0.70	0.69	0.04	5.71	-0.01	1.43	0.08	0.09	11.20	0.08	1.15	12.86	-0.01	-0.29	0.06	1.71
FT4 - (CVb)	3	3.83	3.87	0.16	4.18	0.04	1.04	0.32	0.36	11.20	0.43	0.84	9.40	0.07	0.43	0.78	2.43
LH - (CVb)	1	1.8	1.74	0.11	6.11	-0.06	3.33	0.22	0.28	27.90	0.50	0.56	15.56	0.22	2.02	2.37	4.02
LH - (CVb)	3	54	53.8	3.43	6.35	-0.20	0.37	6.86	7.06	27.90	15.07	0.47	13.07	8.01	2.33	2.68	4.33
PRL - (CVb)	1	7.80	7.79	0.17	2.18	-0.01	0.13	0.34	0.35	29.40	2.29	0.15	4.49	1.94	11.43	11.78	13.43
PRL - (CVb)	3	39.3	38.7	1.7	4.33	-0.60	1.53	3.40	4.00	29.40	11.55	0.35	10.18	7.55	4.44	4.79	6.44
PSA - (CVb)	1	0.40	0.42	0.015	3.75	0.02	5.00	0.03	0.05	33.60	0.13	0.37	12.50	0.08	5.63	5.98	7.63
PSA - (CVb)	3	32.1	31.56	1.57	4.89	-0.54	1.68	3.14	3.68	33.60	10.79	0.34	11.46	7.11	4.53	4.88	6.53
TT3 - (3SD)	1	0.80	0.90	0.047	5.88	0.10	12.50	0.09	0.19	34.10	0.27	0.71	24.25	0.08	1.68	2.03	3.68
TT3 - (3SD)	3	2.79	2.84	0.15	5.38	0.05	1.79	0.30	0.35	23.80	0.66	0.53	12.54	0.31	2.09	2.44	4.09
T4 - (CLIA)	1	7.19	7.11	0.4	5.56	-0.08	1.11	0.80	0.88	20.00	1.44	0.61	12.24	0.56	1.40	1.75	3.40
T4 - (CLIA)	3	16.83	17.10	0.65	3.86	0.27	1.60	1.30	1.57	20.00	3.37	0.47	9.33	1.80	2.76	3.11	4.76
TSH - (CVb)	1	0.184	0.188	0.02	10.87	0.00	2.17	0.04	0.04	38.30	0.07	0.62	23.91	0.03	1.33	1.67	3.32
TSH - (CVb)	3	25.2	26.3	1.37	5.44	1.10	4.37	2.74	3.84	38.30	9.65	0.40	15.24	5.81	4.24	4.59	6.24
Mean(True) - as Publish	hed, Ins	ert, Peer, Ta	arget	octing	TE or TAE	- Total A	nalytic Erro	or = (Bias + Ir	nprecision)	THORN	Comme	nts: EST	IMATED	LEVEL	RELATE	D 3SD LI	IMITS

SD(Obsv) - Lab Standard Deviation - between day testing %CV(Obsv) - Calc. 100 * (SD / Mean(True)) Bias - Mean(True) - Mean(Obsv) %Bias - 100 * ((Mean(Obsv) - Mean(True)) / Mean(True) %TEa - Total Allowable Error (ATE), as with CLIA PT %CV Delta SEcrit - ((%TEa - %Bias) / CV%) - 1.65 Imprecision - (SD(Obsv) * Zp), Zp is '2' for 2SD Limit

- <1.0 is Acceptable, .33 or Less Desired - %TE = %Bias + Zp * %CV TE/TEa %TE ME units - Margin for Error = (TEa - TE) ME in SD - Margin for Error = (TEa - TE) / SD Sigma Metric - (%TEa - %Bias) / CV%

FOR T3 FROM API Q115

Reviewed by: 04/22/2015 Licensed to: ** Evaluation Use Only ** SLT_419 v.4.3, ©2015, SmartLabTools™ Daniel W. Leighton, HCLD(ABB), CLB

Smart	111 °		Qu	ality	Cor	ntrol	Perf	orma	nce l	imit	s (SI)'s) v	s. TE	а		BV (TEa	Limits)
LabToo	15	2		COE	e II /	Chami	otru C		Justia	n Die E	, ad La	+# 100	44 42	02/45		Rhoade	s (TEa)
Complex Porms made	Simple		VIA - 7	ICCE.	55-11 0	chenn	Sury G	C EVa	luatio	I BIOR		1# 400	41,43	03/15	1	CLIA PT	Limits
Analyte & TEa Reference	Ctrl	True Mean	Obsv Mean	Obsv SD	TEa Low	TEa High	2.0 SD Low	2.0 SD High	2.5 SD Low	2.5 SD High	3.0 SD Low	3.0 SD High	3.5 SD Low	3.5 SD High	4.0 SD Low	4.0 SD High	TEB %
E2 - (CVb)	1	95	94.2	11.4	69.16	120.84	71.40	117.00									91
E2 - (CVb)	3	921.5	923.2	57	670.85	1172.15	809.20	1037.20	780.70	1065.70	752.20	1094.20	723.70	1,122.70	695.20	1151.20	46
FERR - (CVb)	1	22.4	23.1	1.68	18.61	26.19	19.74	26.46	18.90								107
FERR - (CVb)	3	347	353	19.7	288.36	405.64	313.60	392.40	303.75	402.25	293.90						77
FOL - (CVb)	1	2.8	2.74	0.15	1.71	3.89	2.44	3.04	2.37	3.12	2.29	3.19	2.22	3.27	2.14	3.34	33
FOL - (CVb)	3	13.45	13.1	0.61	8.20	18.70	11.88	14.32	11.58	14.63	11.27	14.93	10.97	15.24	10.66	15.54	30
FSH - (CVb)	1	6.81	6.46	0.47	5.37	8.25	5.52	7.40		7.64		7.87		8.11			89
FSH - (CVb)	3	38	37.6	1.97	29.94	46.06	33.66	41.54	32.68	42.53	31.69	43.51	30.71	44.50		45.48	54
FT3 - (CVb)	1	2.29	2.31	0.09	2.03	2.55	2.13	2.49	2.09	2.54	2.04						77
FT3 - (CVb)	3	8.99	8.91	0.56	7.97	10.01	7.79	10.03									118
FT4 - (CVb)	1	0.7	0.69	0.04	0.62	0.78	0.61	0.77									115
FT4 - (CVb)	3	3.83	3.87	0.16	3.40	4.26	3.55	4.19	3.47								84
LH - (CVb)	1	1.8	1.74	0.11	1.30	2.30	1.52	1.96	1.47	2.02	1.41	2.07	1.36	2.13	1.30	2.18	56
LH - (CVb)	3	54	53.8	3.43	38.93	69.07	46.94	60.66	45.23	62.38	43.51	64.09	41.80	65.81	40.08	67.52	47
PRL - (CVb)	1	7.8	7.79	0.17	5.51	10.09	7.45	8.13	7.37	8.22	7.28	8.30	7.20	8.39	7.11	8.47	15
PRL - (CVb)	3	39.3	38.7	1.7	27.75	50.85	35.30	42.10	34.45	42.95	33.60	43.80	32.75	44.65	31.90	45.50	35
PSA - (CVb)	1	0.4	0.42	0.015	0.27	0.53	0.39	0.45	0.38	0.46	0.38	0.47	0.37	0.47	0.36	0.48	37
PSA - (CVb)	3	32.1	31.56	1.57	21.31	42.89	28.42	34.70	27.64	35.49	26.85	36.27	26.07	37.06	25.28	37.84	34
TT3 - (3SD)	1	0.8	0.9	0.047	0.53	1.07	0.81	0.99	0.78	1.02	0.76	1.04	0.74	1.06	0.71		71
TT3 - (3SD)	3	2.79	2.84	0.15	2.13	3.45	2.54	3.14	2.47	3.22	2.39	3.29	2.32	3.37	2.24	3.44	53
T4 - (CLIA)	1	7.19	7.11	0.4	5.75	8.63	6.31	7.91	6.11	8.11	5.91	8.31		8.51			61
T4 - (CLIA)	3	16.83	17.1	0.65	13.46	20.20	15.80	18.40	15.48	18.73	15.15	19.05	14.83	19.38	14.50	19.70	47
TSH - (CVb)	1	0.184	0.188	0.02	0.11	0.25	0.15	0.23	0.14	0.24	0.13	0.25	0.12				62
TSH - (CVb)	3	25.2	26.3	1.37	15.55	34.85	23.56	29.04	22.88	29.73	22.19	30.41	21.51	31.10	20.82	31.78	40

Comments:

TEB(%) = Total Error Budget = (TE/Tea)*100, TEB(%) should not exceed 50%; 33% or less is desired.

Reviewed by:

04/22/2015

7

Licensed to: ** Evaluation Use Only ** SLT_419 v.4.3, ©2015, SmartLabTools™ Daniel W. Leighton, HCLD(ABB),

29		e en dense Gregoria		Horna a 1834	98-808			3697.74°	a dana Subara Manufatika	ALCONTRACTOR	969 C-40	Anna Steven	under an		n dan Suba Serie	Godina (or total Godina Godina G			
	Smart			Eval	uate	QC	Perf	orm	ance	vs. A	llow	able	Erro	r Lin	nits		Rese	et Data	
	LabToo Complex Forms made	Simple	3	Che	ck Ca	lculat	ions c	of TE,	TE/TE	a, SEc	vs. P.	Paint	er Pre	senta	tion		Rese Z =	t Form	
	Analyte & TEa Reference	Ctrl	True Mean	Obsv Mean	Obsv SD	Obsv %CV	Dbsv Bias %Bias Imprec TE %TEa TEa TE/TEa %TE ME ME %CV Units %Bias Units Units Units Units Compared to the second tot the second tot the second to the seco												
	Example 1		200	210	5.0	2.50	10.00	5.00	9.80	19.80	10.00	20.00	0.99	9.90	0.20	0.04	0.35	2.00	
	Example 2		200	205	5.0	2.50	5.00	2.50	9.80	14.80	10.00	20.00	0.74	7.40	5.20	1.04	1.35	3.00	

Source: "How-Should-I" Guide to Laboratory Quality Control and Proficiency Testing by Pennell C. Painter, PhD COLA Symposium for Clinical

Laboratories, 2007

200	SD Obs:	5	TEa:	20
	X	1.96	-	
210			BIAS:	10
			1	
10	Imprecision =	<mark>9.8</mark>	SD Obs:	5
			-	
				1.65
RROR	TOTAL Allo	wed ERR	OR	
10	Mean Pub:	200	Delta SEc	0.35
	x			
<mark>9.8</mark>	CMS PT %:	10		
<u>19.8</u>	TEa =	20		
0.99 Less	than 1.0 is Acceptable			
	200 210 10 RROR 10 9.8 19.8 0.99 Less	200 SD Obs: 210 X 210 10 Imprecision = 10 Mean Pub: 10 Mean Pub: 10 X 10 Mean Pub: 10 TEa = 19.8 TEa = 0.99 Less than 1.0 is Acceptable	200 SD Obs: 5 210 X 1.96 210 10 Imprecision = 9.8 RROR TOTAL Allowed ERR 10 Mean Pub: 200 X 10 9.8 CMS PT %: 10 9.8 TEa = 20 19.8 TEa = 20 0.99 Less than 1.0 is Acceptable	200 SD Obs: 5 TEa: 210 X 1.96 - 210 BIAS: - 10 Imprecision = 9.8 SD Obs: 10 Imprecision = 9.8 SD Obs: - 10 Mean Pub: 200 Delta SEc - 10 Mean Pub: 200 Delta SEc - 10 Mean Pub: 200 Delta SEc - 10 TEa = 20 - - 10 TEa = 20 - - 10 Sp.8 CMS PT %: 10 -

△ SEc is the Number of SD's the QC Mean Can Shift before 5% of Results Will Exceed the Defined TEa

Smart			Eva	uate	QC	Perf	orm	ance	vs. A	llow	able	Erro	r Lin	nits		Rese	et Data
	IS Simple	3	Che	ck Ca	lculat	ions c	of TE,	TE/TE	a, SEc	vs. P.	Paint	er Pres	sentat	tion		Z =	1.96
Analyte & TEa Reference	Ctrl	True Mean	Obsv Mean	Obsv SD	Obsv %CV	Bias Units	%Bias	Imprec Units	TE Units	%TEa Limit	TEa Units	TE/TEa Ratio	%TE	ME Units	ME SD	Delta SEcrit	Sigma Metric
Example 1		200	210	5.0	2.50	10.00	5.00	9.80	19.80	10.00	20.00	0.99	9.90	0.20	0.04	0.35	2.00
Example 2		200	205	5.0	2.50	5.00	2.50	9.80	14.80	10.00	20.00	0.74	7.40	5.20	1.04	1.35	3.00

Source: "How-Should-I" Guide to Laboratory Quality Control and Proficiency Testing

by Pennell C. Painter, PhD COLA Symposium for Clinical Laboratories, 2007

Mean Pub:	200	SD Obs:	5	TEa:	20
-		x	1.96	-	
Mean Obs:	205			BIAS:	5
BIAS =	5	Imprecision =	9.8	/ SD Obs:	5
				-	
					1.65
TOTAL EF	RROR	TOTAL Allo	wed ERR	OR	
BIAS:	<mark>5</mark>	Mean Pub:	200	Delta SEc	1.35
+		X			
Imprecision:	<mark>9.8</mark>	CMS PT %:	10		
TE =	14.8	TEa =	20		
	0.74 1.000	than 1.0 is Accentabl	a		

Smart LabToo	ls Simple	8	Eva Pla	luate ut "U	QC sing (Perf Correc	orm t SDs	ance and M	vs. A leans	llow togeth	able er wit	Erro h TE a	r Lin nd TE	nits ia"		Rese Rese Z =	et Data t Form 2.0
Analyte & TEa Reference	Ctrl	True Mean	Obsv Mean	Obsv SD	Obsv %CV	Bias Units	%Bias	Imprec Units	TE Units	%TEa Limit	TEa Units	TE/TEa Ratio	%TE	ME Units	ME SD	Delta SEcrit	Sigma Metric
Lab SD =		50	52	3.0	6.00	2.00	4.00	6.00	8.00	18.00	9.00	0.89	16.00	1.00	0.33	0.68	2.33
Arbitrary SD =		50	52	5.0	10.00	2.00	4.00	10.00	12.00	18.00	9.00	1.33	24.00	-3.00	-0.60	-0.25	1.40
												K	TE > Cont	• TEa, C trol	QC Syst	em is N	IOT in

"The TE must be less than the TEa for the QC system to be in control"

- Not using lab measured SDs and Means can have ramifications
 - o QC will appear in more often
 - Analytical system may develop an error missed by incorrect mean or SD
 - Lead to erroneous data reported to staff potential missed diagnosis
- Use both TE (Total Error) and TEa (Total Error allowed) with YOUR QC data
- Choose best QC rules based on both TE and TEa
 - Select one or more QC rules that will detect an error that is larger than the TEa (that is when TE > TEa)

Source: Using correct SDs and Means together with TE and TEa;Lab and Risk Reduction, Part 6 D. Plaut, ADVANCE

Smart		9	Eva	luate	QC	Perf	orm	ance	vs. A	llow	able	Erro	r Lin	nits		Rese	t Data
LabToo	Is	2	0		Che	eck Ca	alculat	tions v	s Zoe	Broo	ks Art	icle				Rese	t Form
Complex Forms made	Simple	•			011		Teala		0.200	Бібб						Z =	2.0
Analyte & TEa Reference	Ctrl	True Mean	Obsv Mean	Obsv SD	Obsv %CV	Bias Units	%Bias	Imprec Units	TE Units	%TEa Limit	TEa Units	TE/TEa Ratio	%ТЕ	ME Units	ME SD	Delta SEcrit	Sigma Metric
Example-1		100	100	1	1.00	0.00	0.00	2.00	2.00	10.00	10.00	0.20	2.00	8.00	8.00	8.35	10.00
Example-2		100	106	1	1.00	6.00	6.00	2.00	8.00	10.00	10.00	0.80	8.00	2.00	2.00	2.35	4.00
Example-3		100	100	2.5	2.50	0.00	0.00	5.00	5.00	10.00	10.00	0.50	5.00	5.00	2.00	2.35	4.00

Source: Quality Control: Save Money, Reduce Risks

on ADVANCE for Administrators of the Laboratory – by David Plaut, Zoe Brooks, and Kim Przekop – Nov. 27, 2014

Analyte	Ceramic	
True	100.0	
TEa =	10.0	
Mean =	100.0	
SD =	1.00	
Acceptable?	Yes	
Fig 1. Ceramic	Method 1	F

SD =

Acceptable?

Fig 3. Ceramic Method 3

2.50

Yes

	s simple	8	Eva	luate Ch	QC eck C	Perf	f <mark>orm</mark> ations	of TE	vs. A , ME fr	Allow om Zo	able be Arti	Erro cle ML	r Lin .0	nits		Rese Rese Z =	t Data t Form 2.0	
Analyte & TEa Reference	Ctrl	True Mean	Obsv Mean	Obsv SD	DSV Obsv Bias %Bias 1000000000000000000000000000000000000													
Example		5.0	5.1	0.05	1.00	0.10	2.00	0.10	0.20	10.00	0.50	0.40	4.00	0.30	6.00	6.35	8.00	

Figure 2: Illustration of concept of margin for error

"The **Margin for Error** is simply the total allowable error minus the total error. Divide it by the SD to know how many SD the mean can shift before results will exceed allowable error limits."

TE = [abs(5.1-5.0)+(2x0.05)]1. True value = 5.0 TE = 0.2 units 2. TEa = +/-0.5 ME = (0.5 - 0.2) = 0.3 units 3. Mean = 5.1 ME = 0.3 / 0.05 = 6 SD0.05 4. SD = Bias ME TE 44 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 www.mlo-online.com

Source: Use some horse sense with QC By Zoe Brooks and Carol Wambolt - MLO March, 2007

Smart) 		Eva	luate	QC	Per	form	ance	vs. A	llow	able	Erro	r Lin	nits		Rese	et Data t Form
Complex Forms mad	e Simple	8	Ch	еск С	alcula	ations	vs. B	IoRad	Article	e for I	E, IEI	B% an	d Sigr	na		Z =	1.645
Analyte & TEa Reference	Ctrl	True Mean	Obsv Mean	Obsv SD	Obsv %CV	Bias Units	%Bias	Imprec Units	TE Units	%TEa Limit	TEa Units	TE/TEa Ratio	%TE	ME Units	ME SD	Delta SEcrit	Sigma Metric
Example 1		100	102.5	4.5	4.50	2.50	2.50	7.40	9.90	10.00	10.00	0.99	9.90	0.10	0.02	0.02	1.67
Example 2		100	101.5	4.0	4.00	1.50	1.50	6.58	8.08	10.00	10.00	0.81	8.08	1.92	0.48	0.48	2.13
Example 3		100	101.0	2.5	2.50	1.00	1.00	4.11	5.11	10.00	10.00	0.51	5.11	4.89	1.96	1.95	3.60
Example 4		100	100.5	1.7	1.70	0.50	0.50	2.80	3.30	10.00	10.00	0.33	3.30	6.70	3.94	3.94	5.59
					8								3			N	

Smart		Qu	Quality Control Performance Limits (SD's) vs. TEa									BV (TEa Limits) Rhoades (TEa) CLIA PT Limits					
LabTools (3)			Ch	Check Calculations vs. BioRad Article for TE, TEB% and Sigma													
Analyte & TEa Reference	Ctrl	True Mean	Obsv Mean	Obsv SD	TEa Low	TEa High	2.0 SD Low	2.0 SD High	2.5 SD Low	2.5 SD High	3.0 SD Low	3.0 SD High	3.5 SD Low	3.5 SD High	4.0 SD Low	4.0 SD High	TEB %
Example 1		100	102.5	4.5	90.00	110.00	93.50	111.50	91.25								99
Example 2		100	101.5	4	90.00	110.00	93.50	109.50	91.50								81
Example 3		100	101	2.5	90.00	110.00	96.00	106.00	94.75	107.25	93.50	108.50	92.25	109.75	91.00		51
Example 4		100	100.5	1.7	90.00	110.00	97.10	103.90	96.25	104.75	95.40	105.60	94.55	106.45	93.70	107.30	33

The total error budget (TEB) is a quantity that relates the laboratory's test system process capability (TE) to the laboratory's quality requirement (TEa):

TEB = 100*TE / TEa

TEB reflects the percentage of the TEa in patient results that is "consumed" by the laboratory's inherent test system

) Table 2

TEB and Sigma With TEa = 10% as Bias and Imprecision Decrease

Bias	cv	ТЕ	ТЕВ	Sigma
2.5%	4.5%	2.5+1.645*4.5 = 9.9%	100*9.9/10 = 99%	(10-2.5)/4.5 = 1.67
1.5%	4.0%	1.5+1.645*4.0 = 8.1%	100*8.1/10 = 81%	(10-1.5)/4.0 = 2.12
1.0%	2.5%	1.0+1.645*2.5 = 5.1%	100*5.1/10 = 51%	(10-1.0)/2.5 = 3.60
0.5%	1.7%	0.5+1.645*1.7 = 3.3%	100*3.3/10 = 33%	(10-0.5)/1.7 = 5.59

Source: Sigma Metrics, Total Error Budgets & QC on ADVANCE for Administrators of the Laboratory By Curtis A. Parvin, PhD, John Yundt-Pacheco and Max Williams – 01/2012

Smart Evaluate QC Performance vs. Allowable Error Limits Plaut - "Six Sigma and the Laboratory - Part 3" ADVANCE March, 2015											Rese	t Data					
										Rese Z =	t Form 2.0						
Analyte & TEa Reference	Ctrl	True Mean	Obsv Mean	Obsv SD	Obsv %CV	Bias Units	%Bias	Imprec Units	TE Units	%TEa Limit	TEa Units	TE/TEa Ratio	%TE	ME Units	ME SD	Delta SEcrit	Sigma Metric
Example Data		100	103	1.5	1.50	3.00	3.00	3.00	6.00	10.00	10.00	0.60	6.00	4.00	2.67	3.02	4.67
															一 个		
													sigma (SD)			

The idea of six sigma (or standard deviation for us in this article) came from Motorola in the 1980s as a way to reduce shipping defective product. For us, that means reporting errors to the clinicians. One way to do this is during the analytical phase of the laboratory's work to reduce the SD or random error.

and the second states of the second states	and the best harmation to the offer	and the second start of the best harments
SDs	Per	Per
from mean	million	thousand
6	0.0012	0.0000012
5	0.29	0.0002867
4.5	3.4	0.0033977
4	32	0.0316713
3	1350	1.3498981
2	52800	52.8
1	160000	160

Let's say that now your SD for glucose of 1.5 mg/dL and that your bias (your mean - group mean) is 3 mg/dL. The CLIA limit is 10 percent. So, if the group mean is 100, the CLIA limit is 10 mg/dL. Your total error is $3+2^*(1.5)$ or 6. You are 4 units from the CLIA limit. That means that, given your SD of 1.5, you have a 2.7 sigma (SD) method (2.7 = 4/1.5). According to the chart below, you would report about 1 of 1000 runs that exceeded the CLIA limit before detecting the error and holding the patients' results. Keep in mind that this number of 1 in 1000 is runs - not patients.

Smart	Eva	luate	e QC	Per	form	ance	vs.	Allow	able	Erro	r Lin	nits		Rese	et Data		
LabTools			0.8	O & A: Do I Need 4:1c and 10x rules. Westgard / verify sigma cales										Reset Form			
Complex Forms may	te Simple	8	Q Q I	a A: Do Theed 4: Is and Tox rules - Westgard / Verify sigma calcs.										Z =	2.0		
Analyte & TEa Reference	Ctrl	True Mean	Obsv Mean	Obsv SD	Obsv %CV	Bias Units	%Bias	Imprec Units	TE Units	%TEa Limit	TEa Units	TE/TEa Ratio	%TE	ME Units	Margin for Error	Delta SEcrit	Sigma Metric
Westgard	6 6	1.24	1.2725	0.0165	1.297	0.03	2.55	0.03	0.07	8.74	0.11	0.60	5.15	0.04	2.60	3.12	4.77
Ricos Sigma		4.14	3.992	0.125	3.13	-0.15	3.71	0.25	0.40	8.74	0.36	1.10	9.97	-0.04	-0.29	-0.04	1.61
Capioo	15	(2)	1	Nestg	ard E	xamp	le - Sa	me Ex	ample	with	Curre	nt Tem	plate				
Complex Forms made	s Simple										_			_		Z =	2.0
Analyte & TEa Reference	Ctrl	True Mean	Obsv Mean	Obsv SD	Obsv %CV	Bias Units	%Bias	Imprec Units	TE Units	%TEa Limit	TEa Units	TE/TEa Ratio	%TE	ME Units	ME SD	Delta SEcrit	Sigma Metric
Westgard		1.24	1.2725	0.0165	1.3306	0.03	2.6210	0.03	0.07	8.74	0.11	0.60	5.28	0.04	2.60	2.95	4.60
Ricos Sigma		4.14	3.992	0.125	3.02	-0.15	3.57	0.25	0.40	8.74	0.36	1.10	9.61	-0.04	-0.29	0.06	1.71

Comment: math used for calculating the %Bias and %CV can potentially yield a different Sigma. Which math is more appropriate?

Current Validated Template: %CV = 100 * (SD)/(True Mean) %Bias = 100 * (Bias Units)/(True Mean)

Modified Template to match Example: %CV = 100* (SD)/(Obsv Mean) %Bias = 100* (Bias Units)/(Obsv Mean)

	aidea a tha		
 2/2/2015			Q & A: Do I need 4:1s and 10:x rules?
	1.29	4.12	
	1.28	4.12	
	1.27	4.12	
1 2725	1.29	3.57	
Mean	1.273	3.992	
sd 0.016	0.017	0.125	
CV	1.297	3.134	
Target Value	1.24	4.14	
Target SD	0.06	0.2	
bias	0.032	-0.148	
bias%	2.553	.71	

So you can see we have imprecision and bias estimates now in percentage for two levels of this test.

Now we need to determine how good the test should be (what's the allowable error?).

The biologic variation database ("Ricos Goals") sets a desirable allowable error at 8.74%. The Spanish minimum specifications for allowable error set that allowable error at 16%; this is a goal that the vast majority of laboratories should be able to achieve.

We have two sets of quality specifications, so we'll do two sets of Sigma-metric calculations:

TEa Ricos	8.74	8.74	
Ricos Sigma	/ 4.77	1.61	1
Sp. Min.	16	16	
Sp. Min. sigma	10.4	3.9	

References:

- "How-Should-I" Guide to Laboratory Quality Control and Proficiency
 Testing by Pennell C. Painter, PhD COLA Symposium for Clinical Laboratories, 2007
- ADVANCE Magazine Multitude of informative QC articles by David Plaut, Zoe Brooks, Curtis Parvin & many other contributers
- MLO Magazine QC Articles
- BioRad qcnet.com Informative publications, youtube QC videos
- ASCP QC Seminars I've attended
- AACC QC Seminars I've attended
- Westgard.com The Ultimate Source of QC information

Daniel W. Leighton, Bioanalyst dan@smartlabtools.com