

Comparison Testing Demystified:

Applications of Correlation Testing

PAUL RICHARDSON. MSC, FIBMS. SENIOR HPTN QA/QC COORDINATOR

PRICHA18@JHMI.EDU

U.S. Department of Health and Human Services

ACKNOWLEDGEMENTS

 Sponsored by NIAID, NIDA, NIMH under Cooperative Agreement # UM1 AI068619

Comparison Testing Demystified

Paul Richardson.

• Why do we need to perform comparison testing?

Mark Swartz.

• How do we perform correlation testing?

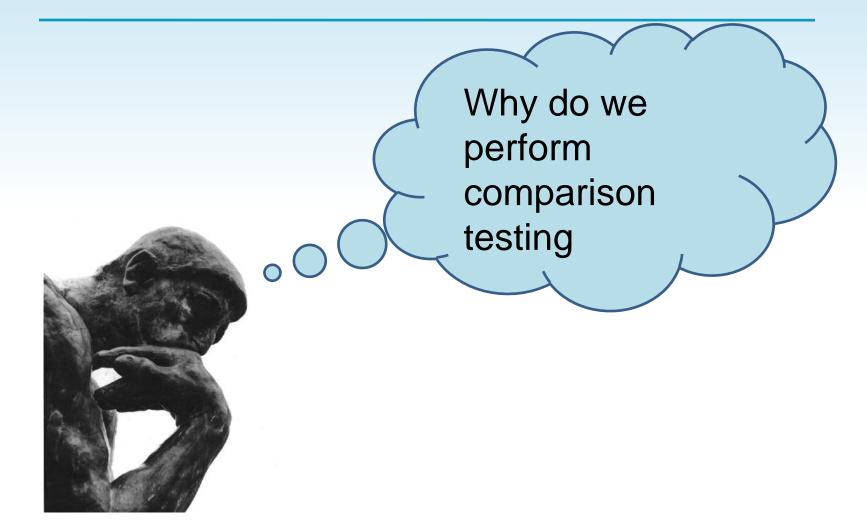
Anne Sholander.

• Applications of correlation testing as an alternate to commercial EQA.

Objectives

After this presentation you should be able to:

- Define correlation testing
- Explain why correlation is necessary
- Explain when correlation testing is required
- Define the recommended frequency of correlation
- Explain how to develop acceptability criteria for correlation
- Troubleshoot failed correlation
- Explain applications for correlation testing as an alternative to commercial EQA panels



Definition of Correlation

Correlation:

An examination using mathematical or statistical variables of two or more items to establish similarities and dissimilarities.

Is it because the guidelines tell us to?

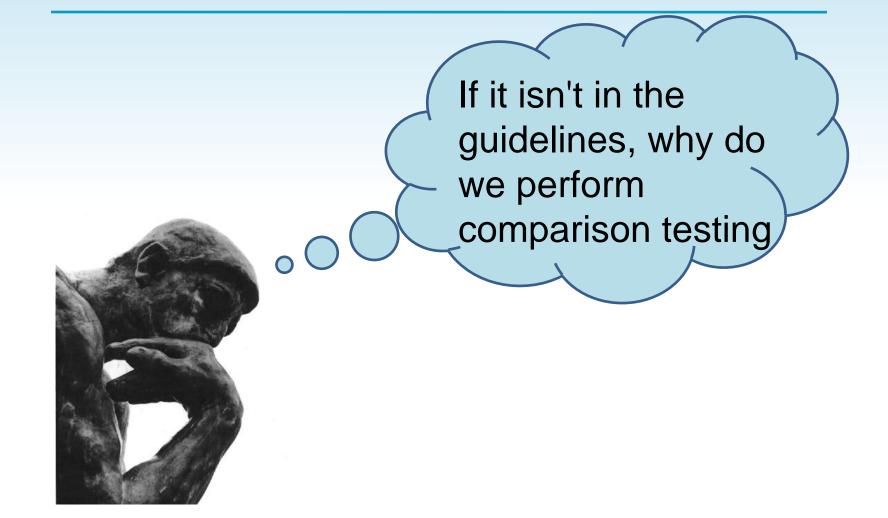
DAIDS Guidelines for Good Clinical Laboratory Practice Standards

Final Version 2.0, 25 July 2011

Is it because the guidelines tell us to?

Parallel testing is discussed but only in terms of new reagent lots.

Do not have time to discuss parallel testing here


Is it because the guidelines tell us to?

But the DAIDS Audit Shell does ask:

Is there a back-up method for each assay ?

Are there periodic comparison checks between the primary and back-up methods?

Because it is good practice

Because stuff happens and you may need to use a different lab or method

Trafford General Hospital. UK 5th July 1929

Pathology Lab – Spring Morning 1993

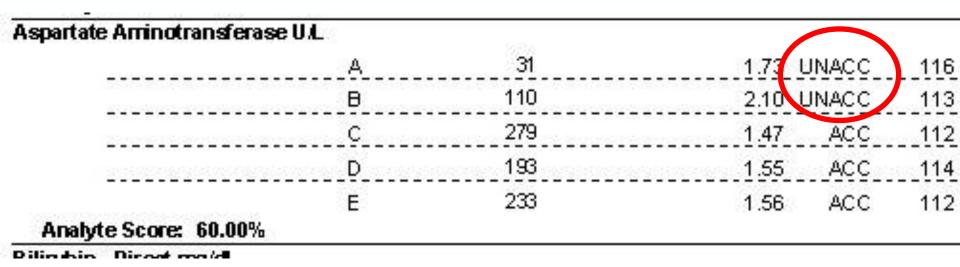
Parallel testing : Back-up comparison

Unexpected staffing problems

Broken Lab equipment

Delivery problem

May fail QA checks such as parallel testing


Old Reagent	New Delivery
-------------	--------------

152	19
73	21
487	794
298	112

Parallel testing : Back-up comparison

Proficiency Testing Problems

Need to look for an alternate method

Similar instrument within the same laboratory

Alternate methodology in an external laboratory

Back-up comparison

Study-participant specimens tested often to assess comparability of results on a regular basis.

Remember GCLP Training:

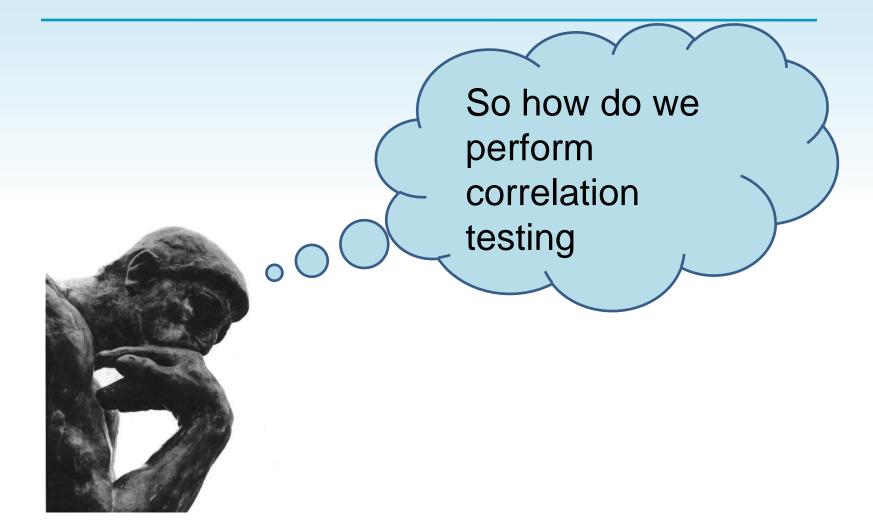
If it isn't documented, it never happened.

DAIDS Guide Coord Clinical Laboratory	
GEORAL SOLUTIONS FOR HIV/AIDS	PPD
62000 Phanesandred FreeJul Gereingenand, Nr. All rights sourced. Fur- field Al-J Phange Int (Phildhar Dalaine, National Pathopic (Philar), De Ensamele Gegreet Comparison 60 (2010)	and in whole or in part with Protonal lands from the National pathware of Hwate and Human Services, under HY Concar

Guidelines state labs should retain:

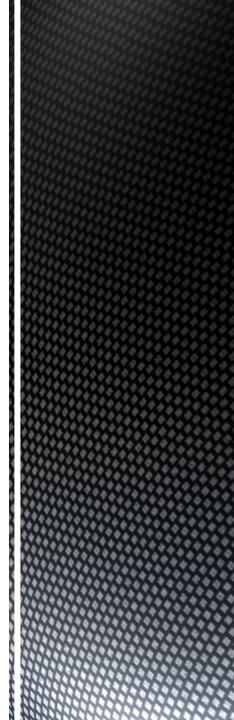
- Instrument printouts
- QC records -comparison is a QC record
- Pack inserts
- Certificates of Analysis

Ensure that the details of your comparison testing are well described in your Quality Manual and site SOPs



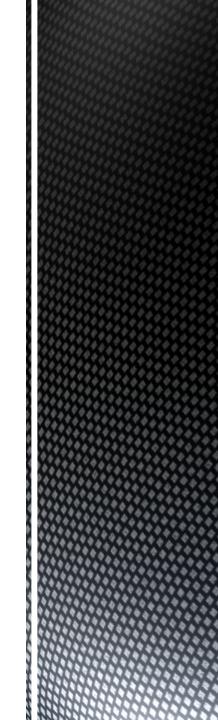
SOP Should Include:

- What to use for comparison testing
- When to perform
- Acceptability criteria
- How to document acceptability and failures
- What to do if comparison passes
- What to do if comparison fails
- Supervisory review process



Comparison Testing Demystified:

Applications of Correlation Testing


Mark Swartz, MT(ASCP), International QA/QC Coordinator, SMILE mswartz4@jhmi.edu Anne Sholander, MT(ASCP), International QA/QC Coordinator, SMILE asholan2@jhmi.edu

Following the Presentation the PowerPoint Slides will be available on the SMILE Website

www.psmile.org

Acknowledgements

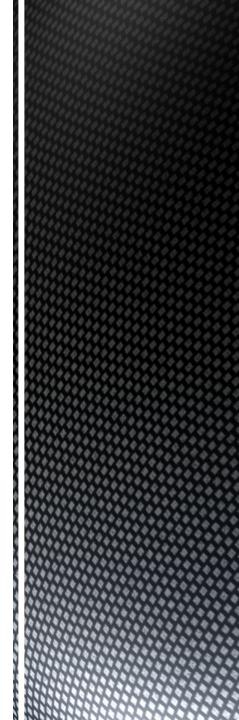
The presenters would like to thank:

DAIDS - Daniella Livnat and Mike Ussery

This project has been funded in whole or in part with Federal funds from the Division of AIDS (DAIDS), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract No. HHSN266200500001C, titled Patient Safety Monitoring in International Laboratories.

IMPAACT Network

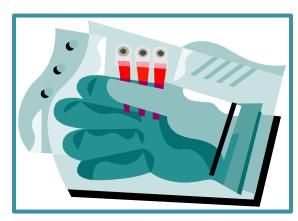
HPTN - Paul Richardson

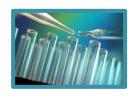

Johns Hopkins University - SMILE

Dr. Robert Miller - Principal InvestigatorBarbara Parsons - Operation ManagerKurt Michael - Project ManagerJo Shim, Mandana Godard & SMILE Staff

What are we correlating?

- Primary Instrument
 - Successful EQA performance history
- Backup instrument
 - Same room?
 - Same facility?
 - Clinic?
 - Different lab?
- Same make and manufacturer?
 - Specificity for the analyte
- Same reference ranges?





Samples

- Fresh patient samples are ideal
- Stored patient samples are next to ideal
 - How is sample integrity affected by storage?
- Pooled samples
 - Ag/Ab reactions might cause protein precipitation

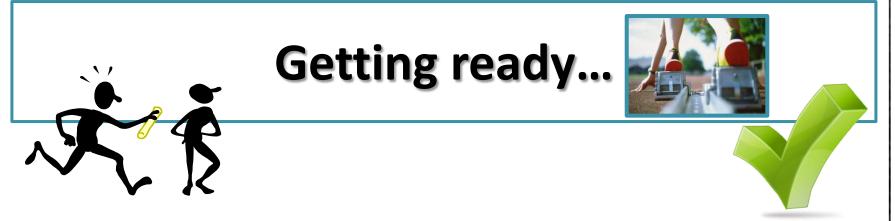
 Ideally QC, EQA, linearity, and other standards should not be used

 Matrix, especially between different instrument makes or models, may mask "true difference" of results

Designed for one platform (calibrators/QC)

Samples

- However, it may be necessary to use QC, EQA, linearity, and other standards
 - Lack of patient samples
 - An attempt should be made to span analytical measurement range
 - Volatility of the analyte correlated (storage and transport)
 - Manufacturer designed materials specifically for validation/correlation


3.2.1 How many? How often?

- No requirements. However, considerations must be made...
 - Type I vs Type II error
 - Type I detecting an insignificant error
 - Type II not detecting a significant error
 - An attempt should be made to cover measurement range
 - Ability to acquire proper specimens
 - Availability of reagents
 - Time spent procuring, storing, transporting, measuring samples and evaluating results

Special Instances

- Failure of periodic monitoring of comparison testing
- EQA Failure
- Internal Quality Control result failure
- Reagent or calibrator lot change
- Major instrument maintenance
- Clinician inquiry regarding the accuracy of results

- Preparing instrumentation
 - All maintenance up to date?
 - Quality Controls within range? Any bias?
- Store samples for the same amount of time, Run on both instruments at the same time

How not to Evaluate Your Data.....

	Instr. 1	Instr. 2	Δ
Sample 1	6000.0	60	5940.0
Sample 2	7000.0	70	6930.0
Sample 3	8000.0	80	7920.0
Sample 4	9000.0	90	8910.0
Sample 5	10000.0	100	9900.0

Correlation Coefficient (r) = 1.00

Glucose

		Instr.	1		Instr.	2
	Replicate 1	Replicate 2	Mean	Replicate 1	Replicate 2	Mean
Sample 1	92	93	92.5	91	87	89
Sample 2	58	59	58.5	58	57	57.5
Sample 3	136	137	136.5	130	127	128.7
Sample 4	302	303	302.5	278	275	276.5
Sample 5	215	214	214.5	209	205	207

Glucose

	Instr. 1			Instr. 2					
	Replicate 1	Replicate 2	Mean	Replicate 1	Replicate 2	Mean			
Sample 1	92	93	92.5	91	87	89			
Grand Me	ean =	(92.	5 + 89)/2 =	90.7	5			
Difference (Δ)= 92.5 - 89= 3.5									
% Differe	nce =	3.5/	90.75	x 100) = 3.	85%			

Guidelines for Grading Criteria

- Recommendations based on clinical studies
- Recommendations from clinicians at your institution
- Recommendations based on biological variability
- Minimum requirements set by accreditation agency
- EQA criteria
- Capability of the instrument based on internal imprecision data

Cumulative Statistics

06 MAY 2012

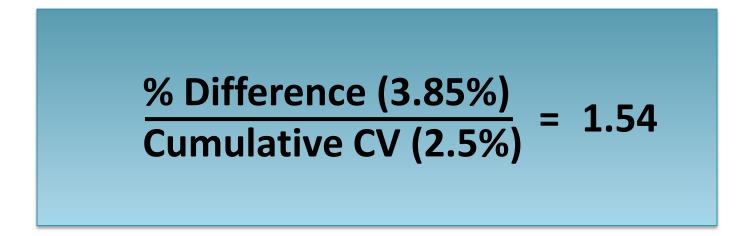
The Johns Hopkins Medical Laborato The Department of Pathology

									Q			SUMMARY		
COMP / QC TYPE - LOT / PROC	c u 'N'	RRENT MEAN-		EKVALUE SD-DELTA	s _cv	T-TEST	F-TEST	с U м 'N'	ULATI MEAN	V E SD	CV	R E F E MEAN	R E N C I SD	E CV
DUDODUATE														
PHOSPHATE BIORAD UNASSAYED CHEM 2-I HITACHI MODULAR P3, S	.OT 16 2	632 7.60	0.18	0.000 -0.140	0.0	0.896	0.000	412	7.50	0.157	2.1	7.62	0.25	3.28
GLUCOSE														
BIORAD UNASSAYED CHEM 1-I HITACHI MODULAR DI,SM HITACHI MODULAR D2,SN ROCHE C701-71,SN1025- ROCHE C701-72,SN1139- ROCHE C701-73,SN1139- ROCHE C701-74,SN1139- HITACHI MODULAR P1,SN HITACHI MODULAR P3, S BIORAD UNASSAYED CHEM 2-I	25 35 33 35 7 2	80.50 84.00 84.60 86.13 85.48 85.60 85.29 85.00	-2.40 -0.87 0.48 -0.40 0.61 -1.29	: 8/31/13 0.840 -1.220 0.000 -1.460 1.440 1.440 1.500 1.500 1.180 1.180 0.650 0.650 1.800 0.570 1.410 0.100 : 8/31/13	1.0 0.0 1.7 1.7 1.4 0.8 2.1 1.7	2.560 0.660 1.650 0.570 0.410 0.610 1.480 1.530	0.223 0.000 0.000 0.000 0.000 0.000 0.903 0.922	418 445 36 31 34 36 409 451	84.67 85.00 84.67 86.16 85.47 85.61 86.34 86.59	$1.770 \\ 2.140 \\ 1.470 \\ 1.490 \\ 1.160 \\ 0.640 \\ 1.900 \\ 1.480 \\ 1.480 \\ 1.480 \\ 1.480 \\ 1.700 \\ 1.48$	2.1 2.5 1.7 1.7 1.4 0.7 2.2 1.7	86.20 86.20 86.20 86.20 86.20 86.20 86.20 86.20 86.20	2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53	2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94
HITACHI MODULAR DI,SN HITACHI MODULAR D2,SN ROCHE C701-71,SN1025- ROCHE C701-72,SN1139- ROCHE C701-73,SN1139- ROCHE C701-74,SN1139- HITACHI MODULAR P1,SN HITACHI MODULAR P3, S	6 2 35 31 34 33 7 2	285.00 280.50 281.257- 284.290- 283.765 282.939- 282.6 283.5	2.80 -8.25 5.743 4.710 5.765	1.790 -3.230 2.120 -2.310 4.5300 4.5300 5.0100 5.0100 4.3300 4.3300 2.8200 2.8200 3.46 0.14 2.12 -2.15	0.6 0.8 1.6 1.8 1.5 1.0 1.2 0.7	1.880 0.510 1.2500 0.9200 1.3100 0.3700 0.15 0.39	${ \begin{smallmatrix} 0.131 \\ 0.119 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.62 \\ 0.29 \\ \end{smallmatrix} }$	419 442 36 32 35 34 405 452	281.26 282.71 281.417 284.438 283.600 282.971 282.8 284.6	4.930 6.150 4.5700 5.0000 4.3800 2.7800 4.36 3.96	1.8 2.2 1.6 1.8 1.5 1.0 1.5 1.4	284.00 284.00 286.842 286.842 286.842 286.842 286.842 284.0 284.0	$6.39 \\ 6.39 \\ 6.390 \\ 6.390 \\ 6.390 \\ 6.390 \\ 6.390 \\ 6.4 \\ 6.4$	2.25 2.228 2.228 2.228 2.228 2.228 2.228 2.3 2.3

CLIA Total Allowable Error = 10%

Glucose

		Instr.	1		Instr.	2
	Replicate 1	Replicate 2	Mean	Replicate 1	Replicate 2	Mean
Sample 1	92	93	92.5	91	87	89


Grand Mean = (92.5 + 89)/2 = 90.75 Difference (Δ)= 92.5 - 89= 3.5 % Difference = 3.5/90.75 = 3.85%

Critical Difference

06 MAY 2012 COMP / QC TYPE - LOT / PROC 'N' MEAN - DELTA SD - DELTA CV T-TEST F-TEST	The Johns Hopkins Medical Laborato The Department of Pathology QUALITY CONTROL SUMMARY STATISTICS - WEEKL MAIN CHEMISTRY LAB WEEK ENDING 05-M C U M U L A T I V E BEEER E N C E I 'N' MEAN SD CV MEAN SD CV
PHOSPHATE BIORAD UNASSAYED CHEM 2-LOT 16632 HITACHI MODULAR P3, S 2 7.60 0.18 0.000 -0.140 0.0 0.896 0.000	0 412 7.50 0.157 2.1 7.62 0.25 3.28
GLUCOSE BIORAD UNASSAYED CHEM 1-LOT 16631 EXP DATE: : 8/31/13 HITACHI MODULAR D1,SN 6 86.50 1.33 0.840 -1.220 1.0 2.560 0.223 HITACHI MODULAR D2,SN 2 84.00 -2.67 0.000 -1.460 0.0 0.660 0.000 ROCHE C701-71,SN1025- 35 84.60 -2.40 1.440 1.440 1.7 1.650 0.000 ROCHE C701-72,SN1139- 30 86.13 -0.87 1.500 1.500 1.7 0.570 0.000 ROCHE C701-73,SN1139- 33 85.48 0.48 1.180 1.180 1.4 0.410 0.000 ROCHE C701-74,SN1139- 35 85.60 -0.40 0.650 0.650 0.8 0.610 0.000 HITACHI MODULAR P1,SN 7 85.29 0.61 1.800 0.570 2.1 1.480 0.903 HITACHI MODULAR P3,S 2 85.00 -1.29 1.410 0.100 1.7 1.530 0.922 BIORAD UNASSAYED CHEM 2-LOT 16632 EXP DATE: : 8/31/13	0 445 85.00 2.5 86.20 2.53 2.94 0 36 84.67 1.476 1.7 86.20 2.53 2.94 0 31 86.16 1.490 1.7 86.20 2.53 2.94 0 31 86.16 1.490 1.7 86.20 2.53 2.94 0 34 85.47 1.160 1.4 86.20 2.53 2.94 0 36 85.61 0.640 0.7 86.20 2.53 2.94 0 36 85.61 0.640 0.7 86.20 2.53 2.94 3 409 86.34 1.900 2.2 86.20 2.53 2.94
HITACHI MODULAR D1,SN 6 285.00 2.80 1.790 -3.230 0.6 1.880 0.131 HITACHI MODULAR D2,SN 2 280.50 -8.25 2.120 -2.310 0.8 0.510 0.119 ROCHE C701-71,SN1025- 35 281.257-5.743 4.5300 4.5300 1.6 1.2500 0.0000 ROCHE C701-72,SN1139- 31 284.290-4.710 5.0100 5.0100 1.8 0.9200 0.0000 ROCHE C701-73,SN1139- 34 283.765 5.765 4.3300 4.3300 1.5 1.3100 0.0000 ROCHE C701-74,SN1139- 33 282.939-1.061 2.8200 2.8200 1.0 0.3700 0.0000 HITACHI MODULAR P1,SN 7 282.6 2.4 3.46 0.14 1.2 0.15 0.62 HITACHI MODULAR P3,S 2 283.5 0.8 2.12 -2.15 0.7 0.39 0.29	9 442 282.71 6.150 2.2 284.00 6.39 2.25 0 36 281.417 4.5700 1.6 286.842 6.390 2.228 0 32 284.438 5.0000 1.8 286.842 6.390 2.228 0 35 283.600 4.3800 1.5 286.842 6.390 2.228 0 34 282.971 2.7800 1.0 286.842 6.390 2.228 2 405 282.8 4.36 1.5 284.0 6.4 2.3

Evaluation

This ratio measures the % Difference as a multiple of the Cumulative CV of the worst performing instrument.

Documentation

Analyte	Instr. 1 Mean	Instr. 2 Mean	Grand Mean	Δ	%Δ	Cume CV	%Diff/CV ratio	Accept. % Diff/CV Ratio	Pass/ Fail
Glucose	92.5	89	90.75	3.5	3.9	2.5	1.5	≤3	PASS
Glucose	58.5	57.5	58	1	1.7	2.5	0.7	≤3	PASS
Glucose	136.5	128.7	132.6	7.8	5.9	2.5	2.4	≤3	PASS
Glucose	302.5	276.5	289.5	26	9.0	2.2	3.6	≤3	FAIL
Glucose	214.5	207	210.75	7.5	3.6	2.2	1.4	≤3	PASS

Troubleshooting

- Different methodologies
- Difference in calibration
- Difference in imprecision

 Difference in reagent lot or shipment (storage)

Troubleshooting cont.

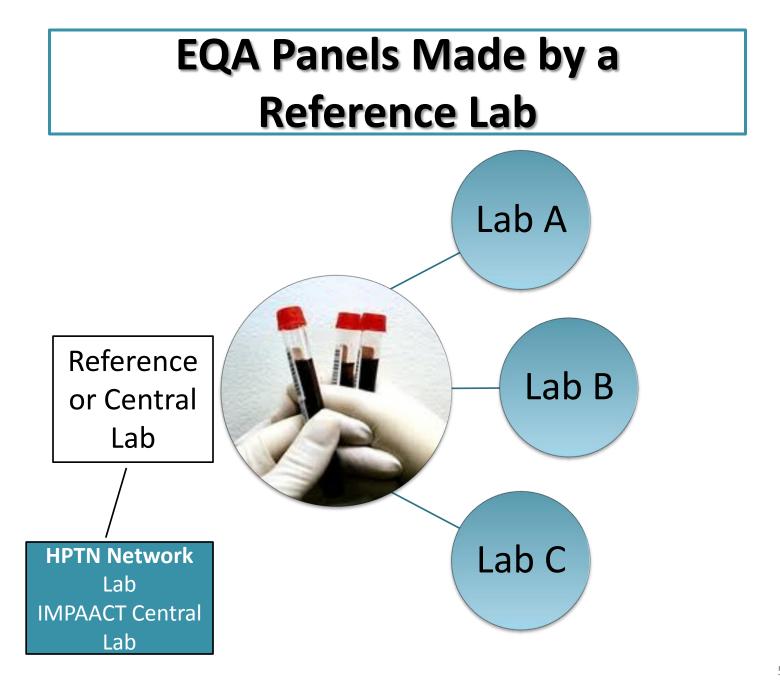
- Difference in lot of calibrators or assignment of values
- Difference in age of calibrators (date opened)
- Difference in reagent life on instrument
- Difference in instrument parameters (dilution ratios, incubation times, etc.)

Correlation as an Alternative to Commercial EQA Panels

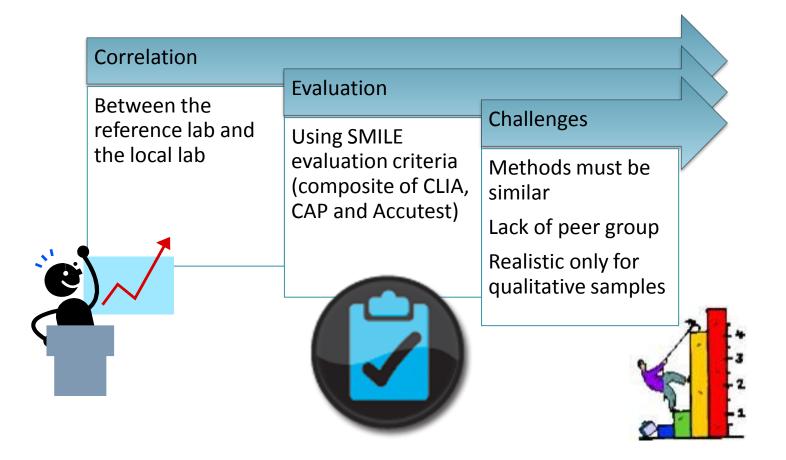
How can correlation testing be used to EQA multiple methods, locations, clinics?

What are the CAP, CLIA, GCLP requirements for EQA of each method?

What are the advantages and disadvantages of using correlation to satisfy these requirements



Some Schemes Currently in Use


Reference or Central Lab

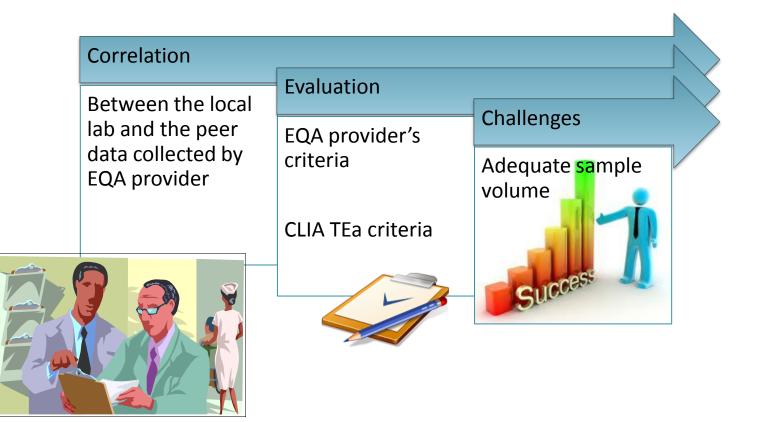
Shared EQA Panels

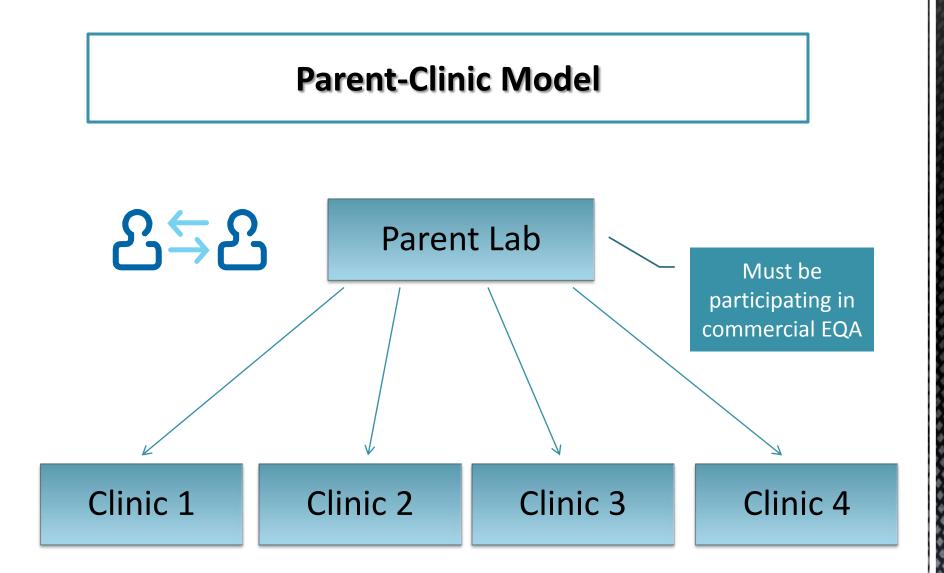
Parent-Clinic Model

How are the results evaluated?

Shared EQA Panels

EQA Commercia





How are the results evaluated?

How are the results evaluated?

Correlation			
Between the main	Evaluation	Challanaaa	\neg
(parent) lab and	Acceptability criteria	Challenges	_ /
clinics	set by the main lab	Finding appropriate	
0 -	SMILE suggests using	samples	
	historical CV or 50% of CLIA	Stability of samples	
414	(quantitative)		
2			
		t r Fil	

In Conclusion....

- Define correlation testing
- Explain why correlation is necessary
- Explain when correlation testing is required
- Define the recommended frequency of correlation
- Explain how to develop acceptability criteria for correlation
- Troubleshoot failed correlation
- Explain applications for correlation testing as an alternative to commercial EQA panels

Questions

Paul Richardson, HPTN pricha18@jhmi.edu

Mark Swartz, SMILE mswartz4@jhmi.edu

Anne Sholander, SMILE asholan2@jhmi.edu

References

- 1. Clinical and Laboratory Standards Institute. (2008). *Verification of Comparability of Patient Results Within One Health Care System: Approved Guideline*. Wayne, PA, USA: CLSI; CLSI document C54-A.
- Clinical and Laboratory Standards Institute. (2008). Assessment of Laboratory Tests When Proficiency Testing is Not Available: Approved Guideline. (2nd ed.). Wayne, PA, USA: CLSI; CLSI document GP20-A2.
- *3. Core Chemistry Quality Control Plan*, Johns Hopkins University, Department of Pathology, Core/Specialty Laboratories, June 21, 2011.
- 4. College of American Pathologists CAP Accreditation Program All Common Checklist 2012.
- 5. Fraser, C. G (2001). *Biological Variation: From Principles to Practice.* Washington, DC: AACC Press.
- 6. Guidelines for Use of Back-Up Equipment and Back-Up Clinical Laboratories in DAIDS-Sponsored Clinical Trials Networks Outside the USA, Backup Lab Guidelines v.2.0 2010-11-10, HIV/AIDS Network Coordination (HANC).
- 7. National Institute of Health. (2011). *DAIDS Guidelines for Good Clinical Laboratory Practice Standards*. Bethesda, Maryland.