

# QUALITY CONTROL SYSTEM

### **'A Simplified Approach to Meeting Basic Laboratory QC Requirements'**

Daniel W. Leighton, MS,MT(ASCP),HCLD(ABB),CLB Laboratory Director / Technical Consultant Dan@smartlabtools.com

### Disclosures – Daniel Leighton, Consulting LLC

- I'm the creator and owner of SmartLabTools<sup>™</sup> PDF applications & website; providing software solutions and education for assisting clinical laboratories in maintaining quality and regulatory compliance.
- By taking the 'Road Less Traveled' Java-Scripted interactive PDF's for lab calculations, and other fill-in-the-blanks desktop tools have been created for ease of use in clinical laboratories.
- Many Tools are FREE and being downloaded all over the world; others support the website.
- Links connect to contributions by experts in the industry, and professional resources for which I have no financial interest

#### **SmartLabTools<sup>™</sup>** Simplified Approach to Quality Control

For this workshop, participants will download templates, customize QC parameters, then enter QC results to demonstrate the interactive interpretation. Attendees will be provided links to FREE QC software to take back to their labs.

#### Following this workshop participants will be able to:

- 1. Set up Statistical Assessment Templates for Daily QC
- 2. Describe Statistical Tools used in QC data interpretation
- 3. Select QC Rules and Establish QC Limits
- Set up Flagging sensitivity for alerting to potential Shifts or Trends... (requires manual review of flagged(\*) results
- 5. Recognize Control Outliers, and Trend Flag Alerts
- 6. Document Corrective Actions

#### SmartLabTools<sup>™</sup> Simplified Approach to Quality Control

#### Following this workshop participants will be able to:

- 7. Define the QC Requirements of the Assay
- 8. Evaluate Published Mean and SD QC Limits
- 9. Use Tools to Calculate own Lab Mean and QC Limits
- 10. Use Tools to Calculate QC Limits using Historical CV
- 11. Understand the Basic Westgard Rules for QC Acceptance
- 12. Use of FREE QC Limits Conversion Calculator
- 13. Download and Customize QC Review Forms
- 14. Understand QC Compliance Responsibilities
- 15. Utilize Dropbox for QC Records and Reviews
- 16. Download SLT QC Procedure to Customize
- 17. Follow SLT Website Links to External QC Resources

# 'Hands-On' Workshop Housekeeping

THINGS YOU NEED TO KNOW ABOUT 'SLT INTERACTIVE PDF'S' ...

1. CALCULATIONS only work using 'FREE' Adobe Acrobat Reader

https://acrobat.adobe.com/us/en/acrobat/pdf-reader.html

- 2. Set Adobe Acrobat Reader as the 'DEFAULT READER' with Windows 10 <u>https://www.youtube.com/watch?v=w4J3a5Ps1uc</u>
- 3. Save First & Open PDF's From Your Computer, Not Mid-Way
- 4. Remove the Blue Highlighting.. <u>PowerPoint Instructions</u>

5. SLT PDF Templates can be filled in then 'Saved as', 'Copy/Paste' to duplicate.. or 'E-mailed', 'Reset' clears prior data

| Home                     | About          | Templates & Resources                         | Store                              | FAQs                                    | Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------|----------------|-----------------------------------------------|------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sm<br>Lat<br>Complex for | art<br>5000    | x x x<br>x x x<br>D<br>D<br>D<br>D<br>L<br>e. |                                    |                                         | 1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 |
| DESCRIPTIC               | <b>DN</b>      |                                               | INSTRUCTION                        | SESSION L                               | INKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SmartLabToo              | ols.com Websi  | te                                            | https://www.sm                     | artlabtools.co                          | <u>m/</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SLT_105 Dai              | ly QC Assessi  | ment                                          | https://www.sm<br>ality_control_re | <u>artlabtools.co</u><br>sults_evaluat  | <u>m/slt_105_qu</u><br>ion.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SLT_100 Me               | an SD Calcula  | ntor                                          | https://www.sm<br>ean_and_sd_c     | <u>artlabtools.co</u><br>alculator.html | <u>m/slt_100_m</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SLT_111 Sim              | ple QC Range   | e Calculator                                  | https://www.sm<br>mple_qc_calcu    | artlabtools.co<br>Ilator.html           | <u>m/slt_111_si</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SLT QC Revi              | iew Forms      |                                               | https://www.sm<br>_forms.html      | artlabtools.co                          | <u>m/qc_review</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SLT Daily QC             | C Written Proc | edure to modify                               | https://www.sm<br>cedure.html      | artlabtools.co                          | <u>m/slt_qc_pro</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

### (Section -1) QC System Overview

SmartLabTools QC System Definition & Overview

QC Statistical Tools & Assessments

Use of QC Templates as Additional Measure for QC Confidence

Daily Statistical Template (SLT\_105) Set-Up & Use

Daily Statistical Template (SLT\_400) Set-Up & Use

### The SLT QC System

The SmartLabTools<sup>™</sup> Statistical Quality Control System is comprised of a collection of downloadable PDF templates created to monitor the analytical performance of clinical laboratory testing. There are NO programs to install.

The simple to use, fill in the blanks templates provide the immediate statistical information needed for decisions of accepting or rejecting test results based on user defined QC limits and QC rules. The tools are widely applicable in the lab.

Analysts will require fundamental QC skills to competently implement the tools, set QC limits, use control rules, interpret QC results, and for troubleshooting. Links to numerous educational resources are provided.

# IQCP or Regular QC ?



Whether you implement an Individualized Quality Control Program, or default CLIA regulated QC Program, you will want a means to verify that a measuring system is performing as expected.



SmartLabTools<sup>™</sup> provides you with the resources needed to do just that with it's Statistical Calculators, L-J Charts, and QC Assessment Templates.



These downloadable PDF's require no programs to load, only the Free Adobe Acrobat PDF Reader



9

### **Definition and Overview**



SmartLabTools<sup>™</sup> Quality Control System provides a simplified practical approach to the immediate assessment of quality control data through the use of a collection of PDF<sup>™</sup> templates programmed with statistical calculations necessary to assist the operator in determining if a quality control result is acceptable.

 Name
 <th

This provides the foundation for the justification of reporting patient results. The interactive QC software may be applied as the primary, or as a secondary QC measure; for detection of Biases, and alert to potential Shifts, or Trends that could immediately or eventually affect the accuracy or reliability of patient test results.

### **Basic QC Requirement**

#### QC 16 R (COLA ACCREDITATION MANUAL)

 "For each quantitative test performed, are quality control data prepared and plotted with each testing event, or are statistical parameters calculated to permit the laboratory to assess continued accuracy and precision of the method?"

### QC Statistics – The Calculations

Mean SD CV **QC** Limits Bias SDI Z-score

 SLT QC Statistical Assessment Templates each contain the following "expert" educational link that explains statistics used.

 QC - The Calculations westgard.com/lesson14.htm

| QC STATISTIC                     | DEFINITION / MEASURES                                                                                                                                                                                                                     |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mean                             | <ul> <li>Sum of individual measurements / # of measurements</li> <li>An estimate of central tendency of stable system distribution</li> <li>Relates to accuracy or systematic error</li> </ul>                                            |
| Standard<br>Deviation (SD)       | <ul> <li>S=Σ(Xi - X)<sup>2</sup> / (n-1)</li> <li>Shows distribution of control results vs. expected mean</li> <li>Measure of imprecision or random error</li> <li>Greater the random error the more imprecise are the results</li> </ul> |
| Coefficient of<br>Variation (CV) | <ul> <li>CV = (SD/Mean)*100</li> <li>Standard deviation as a % of mean</li> <li>Measure of random error or imprecision</li> </ul>                                                                                                         |

| QC STATISTIC                                                                    | DEFINITION / MEASURES                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Bias</b>                                                                     | A measure of control result distance from the target mean                                                                                                                                                                                                                                                                                                                                                                              |
| (Observed QC Result) -                                                          | in same units as the target. <u>Statistical QC objective</u> is to                                                                                                                                                                                                                                                                                                                                                                     |
| (Target QC Result)                                                              | monitor change from the baseline (Target Mean)                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>SDI*(z-score)</b><br>An Indicator of Bias<br>(Value – Target) /<br>Target SD | <ul> <li>A "z-score" describes how many standard deviations a control result is from the mean expected for the material</li> <li>The SDI (z-score) corresponds to where on a control chart a value falls</li> <li>It is very helpful when you are looking at control results on different tests and different materials on a multi-test analyzer</li> <li>A Tech can quickly see what's in, what's out, and what's trending</li> </ul> |
| <i>Reference: Advance:</i>                                                      | <ul> <li>For example: If all levels of QC on an analyte have negative</li></ul>                                                                                                                                                                                                                                                                                                                                                        |
| Scott Warner, Blog 2014                                                         | or have positive SDI(z-score), there may be a calibration bias                                                                                                                                                                                                                                                                                                                                                                         |

\* The Standard Deviation Index (SDI) is used when analyzing PT data, or external QC Program data for bias. Z-score is used for internal QC program data. Both terms are used interchangeably in the SLT QC Templates.

#### SD INTERVAL QC GRAPH

GRAPH FOR VISUALIZING SDI (z-score) graphs are not included in SLT QC Program



#### QC STATISTIC

#### WESTGARD WEB – QC THE CALCULATIONS

#### What's a z-score?

A z-score is a calculated value that tells how many standard deviations a control result is from the mean value expected for that material. It is calculated by taking the difference between the control result and the expected mean, then dividing by the standard deviation observed for that control material. For example, if a control result of 112 is observed on a control material having a mean of 100 and a standard deviation of 5, the z-score is 2.4 [(112- 100)/5]. A z-score of 2.4 means that the observed control value is 2.4 standard deviations from its expected mean, therefore this result exceeds a 2s control limit but not a 3s control limit.

QC STATISTIC

#### WESTGARD WEB - QC THE CALCULATIONS

Why is a z-score useful?

It is very helpful to have z-scores when you are looking at control results from two or more control materials at the same time, or when looking at control results on different tests and different materials on a multitest analyzer. You can quickly see if any result exceeds a single control limit, for example, a z-score of 3.2 indicates that a 3s control limit has been exceeded. You can also look for systematic changes or trends occurring across different control materials, for example, consecutive z-scores of 2 or greater on two different control materials.

| QC ALERTS      | DEFINITION / ACTION                                                                                                                              |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| SLT_105        | <ul> <li>* SDI &gt; 'Trend Alert' Setting Warrants Attention</li></ul>                                                                           |
| Template       | Appears in the 'actions' section whenever a QC value exceeds the Trend Flag Alert                                                                |
| SDI (z)        | adjustable settingie. 1.0,1.5 SDI an Asterisk(*) appears next to the QC Result. <li>* SDI &gt;2.0 Warrants Investigation</li>                    |
| Alert Flags    | Appears in the 'actions' section whenever a QC value exceeds 2.0 SDI <li>"QC Out" In the <u>QC Out</u> column_when QC value exceeds 2.0 SDI</li> |
| SLT_400        | <ul> <li>* Trend Alert – Warrants Attention</li></ul>                                                                                            |
| Template       | Appears in the 'actions' section whenever a QC value exceeds the Trend Flag Alert                                                                |
| SDI Adjustable | Setting, which is adjustable (i.e. 1.0, 1.25, 1.5 SDI) <li>* QC Out – Requires Investigation</li>                                                |
| Alert Flag     | Appears in the 'actions' section whenever a QC value exceeds 2.0 SDI <li>"Out" Appears in the <u>QC In?</u> column</li>                          |

### How Does QC Statistical Assessment Help?



### QC is reviewed and released in LIS...

### QC graphs are reviewed bi-weekly...

An Additional Measure of QC Confidence is provided when using SLT Statistical Assessment Templates:

QC problems are detected sooner when Statistical Assessment is performed on individual QC entries prior to releasing patient results

Printouts Summarize Analyzer QC for rapid review by Analyst, Supervisors, Consultants, and Director (90 files in 9 Seconds)

Provides means for ensuring QC results are statistically evaluated by Analyst & Supervisory Staff prior to releasing patient results

Serves as the 'Master' QC source. Analyzer QC Limits and LIS QC limits follow those established for SLT QC template

Additional QC reviews still recommended bi-weekly or monthly, using L-J Charts & Statistical Summaries from Analyzer or LIS

# Using The Daily QC Templates...

Set up for Rapid Manual Data Entry using [TAB] Key

Calculates QC Result Bias, Provides SDI Calculations, and Flags Values that Exceed Defined QC Limits

'QC O.K.' or 'QC Out' Messages are Instantly generated, Alerting the analyst to when the method has a problem

One can readily look down the column of SDI's for an Alert Flag should a potential QC problem exist

When a QC problem exists, provision is made on the same Template for Documenting the Remedial Actions

# Daily QC Results Evaluation (SLT105)

#### Example-1 (No QC Exceptions)

Example-2 (With a QC Exception)

| Smart<br>LabTools                                                       | QUALITY CONTROL RESULTS EVALUATION<br>IPM LABORATORY<br>This Issue Lab Food allows for somparison of Text Data to an Established OC: Range, The difference, and Standard Deviation Index (SD) are adduated.<br>Any ECH-19 deserves upon all attentions as in the Marry Risk have may had to OC tables: ECH-19 requires greater concern and is Tagged as "OV". |        |               |         |                  |                  |         |                |       |            |  |  |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|---------|------------------|------------------|---------|----------------|-------|------------|--|--|--|
|                                                                         | Any SOD-1.0 deserves special attention<br>HI<br>LOT# MX0                                                                                                                                                                                                                                                                                                      | EMATO  | DLOG<br>X016N | ( - AB) | (MICR<br>16H - E | OS 60<br>XP. 03/ | 05/2016 | gged as "Our". |       |            |  |  |  |
| Specimen                                                                | Analyte                                                                                                                                                                                                                                                                                                                                                       | Low    | High          | Calc    | Calc             | Test             | Calc    | Calc           | QC    | QC<br>Out2 |  |  |  |
| LOW CTL                                                                 | WBC                                                                                                                                                                                                                                                                                                                                                           | 1.60   | 2.40          | 2.00    | 0.20             | 2.10             | 0.10    | 0.50           | QC In | outr       |  |  |  |
| MX016L                                                                  | RBC                                                                                                                                                                                                                                                                                                                                                           | 2.27   | 2.57          | 2.42    | 0.08             | 2.36             | -0.06   | -0.80          | QC In |            |  |  |  |
|                                                                         | HGB                                                                                                                                                                                                                                                                                                                                                           | 5.60   | 6.40          | 6.00    | 0.20             | 6.10             | 0.10    | 0.50           | QC In |            |  |  |  |
|                                                                         | нст                                                                                                                                                                                                                                                                                                                                                           | 14.50  | 18.50         | 16.50   | 1.00             | 16.00            | -0.50   | -0.50          | QC In |            |  |  |  |
|                                                                         | PLT                                                                                                                                                                                                                                                                                                                                                           | 55.00  | 95.00         | 75.00   | 10.00            | 72.00            | -3.00   | -0.30          | QC In |            |  |  |  |
|                                                                         | GRAN %                                                                                                                                                                                                                                                                                                                                                        | 17.50  | 31.50         | 24.50   | 3.50             | 24.50            | 0.00    | 0.00           | QC In |            |  |  |  |
|                                                                         | LYMP %                                                                                                                                                                                                                                                                                                                                                        | 57.50  | 73.50         | 65.50   | 4.00             | 65.9             | 0.40    | 0.10           | QC In |            |  |  |  |
|                                                                         | MID %                                                                                                                                                                                                                                                                                                                                                         | 4.00   | 16.00         | 10.00   | 3.00             | 9.60             | -0.40   | -0.13          | QC In |            |  |  |  |
| NORM CTL                                                                | WBC                                                                                                                                                                                                                                                                                                                                                           | 6.60   | 8.20          | 7.40    | 0.40             | 7.60             | 0.20    | 0.50           | QC In |            |  |  |  |
| MX016N                                                                  | RBC                                                                                                                                                                                                                                                                                                                                                           | 4.46   | 4.82          | 4.64    | 0.09             | 4.58             | -0.06   | -0.67          | QC In |            |  |  |  |
|                                                                         | HGB                                                                                                                                                                                                                                                                                                                                                           | 12.90  | 14.10         | 13.50   | 0.30             | 13.40            | -0.10   | -0.33          | QC In |            |  |  |  |
|                                                                         | нст                                                                                                                                                                                                                                                                                                                                                           | 34.60  | 39.60         | 37.10   | 1.25             | 36.50            | -0.60   | -0.48          | QC In |            |  |  |  |
|                                                                         | PLT                                                                                                                                                                                                                                                                                                                                                           | 216.00 | 296.00        | 256.00  | 20.00            | 247.00           | -9.00   | -0.45          | QC In |            |  |  |  |
|                                                                         | GRAN %                                                                                                                                                                                                                                                                                                                                                        | 52.00  | 66.00         | 59.00   | 3.50             | 61.20            | 2.20    | 0.63           | QC In |            |  |  |  |
|                                                                         | LYMP %                                                                                                                                                                                                                                                                                                                                                        | 27.00  | 39.00         | 33.00   | 3.00             | 31.70            | -1.30   | -0.43          | QC In |            |  |  |  |
|                                                                         | MID %                                                                                                                                                                                                                                                                                                                                                         | 3.00   | 13.00         | 8.00    | 2.50             | 7.10             | -0.90   | -0.36          | QC In |            |  |  |  |
| HIGH CTL                                                                | WBC                                                                                                                                                                                                                                                                                                                                                           | 18.20  | 21.40         | 19.80   | 0.80             | 19.60            | -0.20   | -0.25          | QC In |            |  |  |  |
| MX016H                                                                  | RBC                                                                                                                                                                                                                                                                                                                                                           | 5.46   | 5.86          | 5.66    | 0.10             | 5.60             | -0.06   | -0.60          | QC In |            |  |  |  |
|                                                                         | HGB                                                                                                                                                                                                                                                                                                                                                           | 17.60  | 19.00         | 18.30   | 0.35             | 18.20            | -0.10   | -0.29          | QC In |            |  |  |  |
|                                                                         | нст                                                                                                                                                                                                                                                                                                                                                           | 47.40  | 53.40         | 50.40   | 1.50             | 49.60            | -0.80   | -0.53          | QC In |            |  |  |  |
|                                                                         | PLT                                                                                                                                                                                                                                                                                                                                                           | 437.00 | 567.00        | 502.00  | 32.50            | 483.00           | -19.00  | -0.58          | QC In |            |  |  |  |
|                                                                         | GRAN %                                                                                                                                                                                                                                                                                                                                                        | 72.00  | 86.00         | 79.00   | 3.50             | 79.20            | 0.20    | 0.06           | QC In |            |  |  |  |
|                                                                         | LYMP %                                                                                                                                                                                                                                                                                                                                                        | 10.50  | 20.50         | 15.50   | 2.50             | 15.50            | 0.00    | 0.00           | QC In |            |  |  |  |
|                                                                         | MID %                                                                                                                                                                                                                                                                                                                                                         | 1.50   | 9.50          | 5.50    | 2.00             | 5.30             | -0.20   | -0.10          | QC In |            |  |  |  |
| QC item(s):<br>Problem:<br>Actions:                                     |                                                                                                                                                                                                                                                                                                                                                               |        |               |         |                  | •                |         |                |       |            |  |  |  |
| SLT_CW105a v.070212<br>@ SmartLabTools<br>2008-2013<br>David W Leichtro | 1/6/2016 Reset A<br>7:24 am                                                                                                                                                                                                                                                                                                                                   | II Re  | set Data      | -       | Ka               | thy              |         | Dev            | DL    |            |  |  |  |

| CONTROL RESULTS EVALUATION     IPM LABORATORY      The Standing of the Control of the Contr |                                                                                             |                               |                         |                    |                  |                  |                          |                      |                        |                  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------|-------------------------|--------------------|------------------|------------------|--------------------------|----------------------|------------------------|------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Any SOI-1.0 deserves special attention a<br>HE<br>LOT# MX01                                 | MATC                          |                         | ( - AB)            | (MICR<br>16H - E | OS 60<br>XP. 03/ | 05/201                   | gged as "Out".       |                        |                  |  |  |  |
| Specimen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyte                                                                                     | Low<br>2SD                    | High                    | Calc               | Calc             | Test             | Calc                     | Calc                 | QC                     | QC<br>Out2       |  |  |  |
| LOW CTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WBC                                                                                         | 1.60                          | 2.40                    | 2.00               | 0.20             | 2.30             | 0.30                     | 1.50 *               | QC In                  | out.             |  |  |  |
| MX016L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RBC                                                                                         | 2.27                          | 2.57                    | 2.42               | 0.08             | 2.36             | -0.06                    | -0.80                | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HGB                                                                                         | 5.60                          | 6.40                    | 6.00               | 0.20             | 6.10             | 0.10                     | 0.50                 | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | нст                                                                                         | 14.50                         | 18.50                   | 16.50              | 1.00             | 16.00            | -0.50                    | -0.50                | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLT                                                                                         | 55.00                         | 95.00                   | 75.00              | 10.00            | 64.00            | -11.00                   | -1.10*               | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GRAN %                                                                                      | 17.50                         | 31.50                   | 24.50              | 3.50             | 24.50            | 0.00                     | 0.00                 | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LYMP %                                                                                      | 57.50                         | 73.50                   | 65.50              | 4.00             | 65.90            | 0.40                     | 0.10                 | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MID %                                                                                       | 4.00                          | 16.00                   | 10.00              | 3.00             | 9.60             | -0.40                    | -0.13                | QC In                  |                  |  |  |  |
| NORM CTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WBC                                                                                         | 6.60                          | 8.20                    | 7.40               | 0.40             | 8.30             | 0.90                     | 2.25 *               |                        | QC Out           |  |  |  |
| MX016N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RBC                                                                                         | 4.46                          | 4.82                    | 4.64               | 0.09             | 4.50             | -0.14                    | -1.55*               | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HGB                                                                                         | 12.90                         | 14.10                   | 13.50              | 0.30             | 13.40            | -0.10                    | -0.33                | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | нст                                                                                         | 34.60                         | 39.60                   | 37.10              | 1.25             | 36.50            | -0.60                    | -0.48                | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLT                                                                                         | 216.00                        | 296.00                  | 256.00             | 20.00            | 247.00           | -9.00                    | -0.45                | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GRAN %                                                                                      | 52.00                         | 66.00                   | 59.00              | 3.50             | 61.20            | 2.20                     | 0.63                 | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LYMP %                                                                                      | 27.00                         | 39.00                   | 33.00              | 3.00             | 31.70            | -1.30                    | -0.43                | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MID %                                                                                       | 3.00                          | 13.00                   | 8.00               | 2.50             | 7.10             | -0.90                    | -0.36                | QC In                  |                  |  |  |  |
| HIGH CTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WBC                                                                                         | 18.20                         | 21.40                   | 19.80              | 0.80             | 21.30            | 1.50                     | 1.88 *               | QC In                  |                  |  |  |  |
| MX016H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RBC                                                                                         | 5.46                          | 5.86                    | 5.66               | 0.10             | 5.47             | -0.19                    | -1.90*               | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HGB                                                                                         | 17.60                         | 19.00                   | 18.30              | 0.35             | 18.20            | -0.10                    | -0.29                | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | нст                                                                                         | 47.40                         | 53.40                   | 50.40              | 1.50             | 49.60            | -0.80                    | -0.53                | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLT                                                                                         | 437.00                        | 567.00                  | 502.00             | 32.50            | 483.00           | -19.00                   | -0.58                | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GRAN %                                                                                      | 72.00                         | 86.00                   | 79.00              | 3.50             | 79.20            | 0.20                     | 0.06                 | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LYMP %                                                                                      | 10.50                         | 20.50                   | 15.50              | 2.50             | 15.50            | 0.00                     | 0.00                 | QC In                  |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MID %                                                                                       | 1.50                          | 9.50                    | 5.50               | 2.00             | 5.30             | -0.20                    | -0.10                | QC In                  |                  |  |  |  |
| QC item(s): V<br>Problem: V<br>Actions: F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WBC outlier, RBC's biased I<br>WBC Control Out by >2SD, o<br>Re-Calibrate Analyzer prior to | ow<br>other 2 Le<br>o running | vels Bias<br>patient sa | ed on Hig<br>mples | gh Side          | *                | * SDI >1.(<br>* SDI >2.( | ) Warran<br>) Warran | ts Attent<br>ts Invest | tion<br>tigation |  |  |  |
| SLT_CW105a v.070212<br>© SmartLabTools<br>2008-2013<br>Daniel W. Leighton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 1/6/2016 Reset A<br>7:19 am                                                               | II Re<br>Ink To QC            | set Data<br>Reference   | ]                  | Ka               | thy              |                          | Rev                  | DL<br>viewed b         | <u>v</u>         |  |  |  |

# SLT\_105 Setting up the QC Template

#### QUALITY CONTROL RESULTS EVALUATION REPLACE WITH NAME OF LABORATORY

This Smart Lab Tool allows for comparison of Test Data to an Established QC Range. The difference, and Standard Deviation Index (SDI) are calculated. Any SDI>Alert(\*) deserves special attention as in the future this bias may lead to QC failure. SDI>2.0 requires greater concern and is flagged as "Out".

### Replace with Test System Description & Control Information Here..

| Specimen<br>Source | Analyte<br>Name      | Low<br>-2SD | High<br>+2SD | Calc<br>Mean | Calc<br>1SD | Test<br>Value | Calc<br>Bias | Calc<br>SDI | QC<br>In? | QC<br>Out? |
|--------------------|----------------------|-------------|--------------|--------------|-------------|---------------|--------------|-------------|-----------|------------|
| L-1 Control        | Glucose              | 100.00      | 110.00       | 105.00       | 2.50        |               |              |             |           |            |
| Enter -2SD a       | and +2SD Limits Here |             |              |              |             |               |              |             |           |            |
|                    |                      |             |              |              |             |               |              |             |           |            |

• Enter Name of Laboratory in Header

Smart

LabTools

?

- Define Test System.. Instrument (Method) & Control Info.
- By Line, Enter Control, Analyte, QC Limits for up to 24 Files
- Mean & 1SD are Automatically Calculated
- Setup QC Template Test Order to Match Analyzer Printout
- "Save As".. To Name Your Customized Template
- Enter Results in Test Value Column, Using [Tab] Key
- After each use .. 'Save' Adding Date to File Name
- Click [Reset Data] Prior to Next Use
- [Reset All] Clears Template Completely

1.0

Set SDI Bias Alert Here

# SLT\_105 Data Entry & Assessment



Data is rapidly entered in QC Results Column using [Tab] key

[Reset Data] button clears QC Results, Interpretations, and QC Actions

Click Here for Link to Download Free Demo Template

### Statistical Assessment Template, SLT\_105 Showing Bias Calculations & Interpretation

| HEMATOLOGY - ABX MICROS 60<br>LOT# MX400L, MX400N, MX400H - EXP. 09/05/2016 |     |      |      |      |      |      |      |        |       |        |  |  |  |
|-----------------------------------------------------------------------------|-----|------|------|------|------|------|------|--------|-------|--------|--|--|--|
| Specimen<br>SourceAnalyte<br>NameLowHigh<br>HighCalcCalcTest<br>            |     |      |      |      |      |      |      |        |       |        |  |  |  |
| LOW CTL                                                                     | WBC | 1.60 | 2.40 | 2.00 | 0.20 | 2.00 | 0.00 | 0.00   | QC In |        |  |  |  |
| MX400L                                                                      | RBC | 2.21 | 2.51 | 2.36 | 0.08 | 2.53 | 0.17 | 2.27 * |       | QC Out |  |  |  |
|                                                                             | HGB | 5.70 | 6.50 | 6.10 | 0.20 | 6.20 | 0.10 | 0.50   | QC In |        |  |  |  |

### Flagged Alerts & Corrective Actions on Lower Page



### **Multi-Level QC Statistical Assessment**

Adjustable trend alert flagging and average SDI (z-score) statistic indices for up to 3-levels, 90 Files (SLT\_400)

#### **QC Data Entry & Assessment**

| LabTools               | ?              |                     | DA              |                 | Q.             | ACR<br>C. ST     | LAB<br>ATIS   |         | L AS       | RY<br>SSE | SSN         | IENT               |                    |                  |              | ?                   |                |
|------------------------|----------------|---------------------|-----------------|-----------------|----------------|------------------|---------------|---------|------------|-----------|-------------|--------------------|--------------------|------------------|--------------|---------------------|----------------|
| TEST SYSTEM:           | INTEG          | RA 400+             |                 |                 |                | INTEG            | RA 400        | +       |            |           | INTEG       | GRA 400            | +                  |                  |              | Bias # C            | TLS            |
| CONTROLS:              | MULT           | IQUAL 1             |                 |                 |                | MULTIQUAL 2      |               |         |            |           |             | IQUAL              | 3                  |                  |              | 3                   |                |
| LOT NUMBERS:           | 45681          |                     |                 |                 |                | 45682            |               |         |            |           | 45683       | 3                  |                    |                  |              | Trend Fla           | ag =           |
| EXPIRATION:            | 06/30/         | 16                  |                 |                 |                | 06/30/           | 16            |         | 06/30/16   |           |             |                    |                    |                  |              | 1.5                 |                |
| Analyte<br>Description | L-1<br>Mean    | Test<br>Value       | Bias            | SDI<br>(Z)      | QC<br>In?      | L-2<br>Mean      | Test<br>Value | Bias    | SDI<br>(Z) | QC<br>In? | L-3<br>Mean | Test<br>Value      | Bias               | SDI<br>(Z)       | QC<br>In?    | Ave<br>SDI (Z)      | Trend<br>Alert |
| ALP                    | 33.20          | 31                  | -2.20           | -0.60           | In             | 132.50           | 120           | -12.50  | -1.43      | In        | 297.50      | 281                | -16.50             | -0.93            | In           | -0.99               |                |
| ALT                    | 22.35          | 19                  | -3.35           | -1.38           | In             | 88.30            | 80            | -8.30   | -1.42      | In        | 170.00      | 168                | -2.00              | -0.19            | In           | -1.00               |                |
| AST                    | 39.75          | 38                  | -1.75           | -0.72           | In             | 105.50           | 98            | -7.50   | -1.11      | In        | 236.00      | 232                | -4.00              | -0.25            | In           | -0.69               |                |
| DBIL                   | 0.21           | 0.2                 | -0.01           | -0.32           | In             | 1.17             | 1.1           | -0.07   | -0.35      | In        | 2.09        | 2.0                | -0.08              | -0.26            | In           | -0.31               |                |
| TBIL                   | 0.51           | 0.6                 | 0.09            | 1.00            | In             | 2.86             | 2.9           | 0.05    | 0.19       | In        | 6.77        | 6.3                | -0.47              | -0.94            | In           | 0.08                |                |
| ALB                    | 2.53           | 2.5                 | -0.03           | -0.18           | In             | 3.49             | 3.4           | -0.09   | -0.47      | In        | 4.27        | 4.2                | -0.07              | -0.33            | In           | -0.32               |                |
| тр                     | 3.95           | 4.1                 | 0.16            | 0.85            | In             | 5.39             | 5.6           | 0.22    | 0.95       | In        | 6.54        | 6.7                | 0.17               | 0.61             | In           | 0.80                |                |
| CA                     | 6.01           | 5.8                 | -0.21           | -0.98           | In             | 10.33            | 10.2          | -0.13   | -0.34      | In        | 13.10       | 13.0               | -0.10              | -0.20            | In           | -0.50               |                |
| PHOS                   | 2.04           | 2.0                 | -0.04           | -0.27           | In             | 4.62             | 4.5           | -0.12   | -0.59      | In        | 7.98        | 7.8                | -0.18              | -0.64            | In           | -0.50               |                |
| CREA                   | 0.59           | 0.58                | -0.01           | -0.28           | In             | 1.70             | 1.72          | 0.02    | 0.19       | In        | 5.83        | 5.66               | -0.17              | -0.47            | In           | -0.19               |                |
| BUN                    | 14.55          | 15.2                | 0.65            | 0.67            | In             | 39.15            | 39.1          | -0.05   | -0.02      | In        | 69.85       | 67.2               | -2.65              | -0.66            | In           | -0.00               |                |
| NA                     | 113.50         | 116                 | 2.50            | 0.91            | In             | 138.50           | 141           | 2.50    | 0.77       | In        | 154.00      | 154                | 0.00               | 0.00             | In           | 0.56                |                |
| к                      | 2.57           | 2.6                 | 0.04            | 0.45            | In             | 4.08             | 4.1           | 0.02    | 0.18       | In        | 7.67        | 7.6                | -0.07              | -0.33            | In           | 0.10                |                |
| CL                     | 76.00          | 78                  | 2.00            | 0.80            | In             | 95.40            | 98            | 2.60    | 0.93       | In        | 119.50      | 123                | 3.50               | 0.93             | In           | 0.89                |                |
| CO2                    | 16.55          | 16                  | -0.55           | -0.29           | In             | 19.90            | 19            | -0.90   | -0.41      | In        | 25.20       | 25                 | -0.20              | -0.08            | In           | -0.26               |                |
| GLUC                   | 59.50          | 58                  | -1.50           | -0.49           | In             | 122.50           | 119           | -3.50   | -0.67      | In        | 366.00      | 349                | -17.00             | -1.17            | In           | -0.78               |                |
| GGT                    | 27.20          | 26                  | -1.20           | -0.42           | In             | 75.45            | 72            | -3.45   | -0.62      | In        | 126.00      | 119                | -7.00              | -0.82            | In           | -0.62               |                |
| UA                     | 3.64           | 3.7                 | 0.06            | 0.35            | In             | 5.39             | 5.4           | 0.01    | 0.04       | In        | 9.62        | 9.8                | 0.18               | 0.46             | In           | 0.29                |                |
| MG                     | 1.11           | 1.1                 | -0.01           | -0.11           | In             | 2.58             | 2.5           | -0.08   | -0.59      | In        | 3.75        | 3.6                | -0.15              | -0.81            | In           | -0.50               |                |
| ск                     | 83.00          | 80                  | -3.00           | -0.40           | In             | 287.00           | 267           | -20.00  | -1.21      | In        | 677.00      | 645                | -32.00             | -0.93            | In           | -0.85               |                |
| CHOL                   | 110.45         | 113                 | 2.55            | 0.48            | In             | 181.00           | 184           | 3.00    | 0.38       | In        | 263.00      | 262                | -1.00              | -0.09            | In           | 0.26                |                |
| TRIG                   | 88.90          | 93                  | 4.10            | 0.80            | In             | 134.50           | 138           | 3.50    | 0.52       | In        | 220.00      | 225                | 5.00               | 0.56             | In           | 0.62                |                |
| HDL                    | 28.90          | 35                  | 6.10            | 2.30            | Out            | 49.55            | 57            | 7.45    | 1.59       | In        | 85.00       | 91                 | 6.00               | 0.71             | In           | 1.53                | *              |
| LDH                    | 123.00         | 122                 | -1.00           | -0.17           | In             | 181.00           | 179           | -2.00   | -0.25      | In        | 404.50      | 403                | -1.50              | -0.09            | In           | -0.17               |                |
| C3                     | 89.65          | 89                  | -0.65           | -0.09           | In             | 120.00           | 126           | 6.00    | 0.67       | In        | 152.50      | 151                | -1.50              | -0.13            | In           | 0.15                |                |
| C4                     | 16.45          | 15                  | -1.45           | -0.95           | In             | 21.60            | 20            | -1.60   | -0.82      | In        | 28.15       | 25                 | -3.15              | -1.30            | In           | -1.02               |                |
| IGA                    | 114.00         | 127                 | 13.00           | 1.63            | In             | 155.50           | 160           | 4.50    | 0.51       | In        | 201.00      | 203                | 2.00               | 0.20             | In           | 0.78                | *              |
| IGG                    | 599.50         | 579                 | -20.50          | -0.62           | In             | 817.50           | 813           | -4.50   | -0.11      | In        | 983.00      | 963                | -20.00             | -0.48            | In           | -0.40               |                |
| IGM                    | 54.15          | 54                  | -0.15           | -0.03           | In             | 81.25            | 80            | -1.25   | -0.25      | In        | 93.40       | 88                 | -5.40              | -1.12            | In           | -0.47               |                |
|                        |                |                     |                 |                 |                |                  |               |         |            |           |             |                    |                    |                  |              |                     |                |
| Comments / Action      | ns: HDI<br>Re- | L-1 >2<br>calibrate | 2SD, o<br>prior | ther 2<br>to ne | 2 con<br>xt ru | ntrols in<br>In. | n, biaseo     | d on hi | igh sio    | de        |             | * Trend<br>* QC OI | Alert -<br>ut - Re | - Warr<br>quires | ants<br>Inve | Attenti<br>estigati | ion<br>ion     |
|                        |                |                     |                 | 1/6/16          |                | Rese             | t Data        |         | м          | сна       | EL          |                    |                    | ON/              | DL           |                     |                |
|                        |                |                     |                 | 08:57           |                |                  |               | _       | 1          | Analy     | st          |                    | I                  | Review           | ed by        | /                   | _              |
| 01 T 400 b             |                |                     |                 |                 | @2             | 007-201          | 4 Smartl a    | hTools  | TM         |           |             | Dan                | iel W Le           | aighton          | MTO          | ASCD) C             | 1.0            |

#### **QC** Parameter Set-up Page

| Smart ACR LABORATORY<br>LabTools ESTABLISHED QUALITY CONTROL PARAMETERS                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |       |        |        |        |       |                             |       |        |       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-------|--------|--------|--------|-------|-----------------------------|-------|--------|-------|--|
| TEST SYSTEM:                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RA 400- | +      |       |        | RA 400 | +      |       | INTEGRA 400+<br>MULTIQUAL 3 |       |        |       |  |
| LOT NUMBERS                                                                                                                                                                                                                                               | 45681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -       |        |       | 45682  | -      |        |       | 45683                       | -     |        |       |  |
| EXPIRATION:                                                                                                                                                                                                                                               | 06/30/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6       |        |       | 06/30/ | 16     |        |       | 06/30/1                     | 6     |        |       |  |
| Analyte                                                                                                                                                                                                                                                   | L-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L-1     | L-1    | L-1   | L-2    | L-2    | L-2    | L-2   | L-3 L-3 L-3 L-3             |       |        |       |  |
| Description                                                                                                                                                                                                                                               | -2SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +2SD    | Mean   | 1SD   | -2SD   | +2SD   | Mean   | 1SD   | -2SD                        | +2SD  | Mean   | 1SD   |  |
| ALP                                                                                                                                                                                                                                                       | 25.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.5    | 33.20  | 3.65  | 115    | 150    | 132.50 | 8.75  | 262                         | 333   | 297.50 | 17.75 |  |
| ALT                                                                                                                                                                                                                                                       | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.2    | 22.35  | 2.43  | 76.6   | 100    | 88.30  | 5.85  | 148.5                       | 191.5 | 170.00 | 10.75 |  |
| AST                                                                                                                                                                                                                                                       | 34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44.6    | 39.75  | 2.43  | 92     | 119    | 105.50 | 6.75  | 204                         | 268   | 236.00 | 16.00 |  |
| DBIL                                                                                                                                                                                                                                                      | 0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.298   | 0.21   | 0.04  | 0.791  | 1.54   | 1.17   | 0.19  | 1.44                        | 2.73  | 2.09   | 0.32  |  |
| TBIL                                                                                                                                                                                                                                                      | 0.325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.692   | 0.51   | 0.09  | 2.37   | 3.34   | 2.86   | 0.24  | 5.78                        | 7.75  | 6.77   | 0.49  |  |
| ALB                                                                                                                                                                                                                                                       | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.81    | 2.53   | 0.14  | 3.12   | 3.85   | 3.49   | 0.18  | 3.84                        | 4.70  | 4.27   | 0.22  |  |
| ТР                                                                                                                                                                                                                                                        | 3.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.31    | 3.95   | 0.18  | 4.93   | 5.84   | 5.39   | 0.23  | 5.99                        | 7.08  | 6.54   | 0.27  |  |
| CA                                                                                                                                                                                                                                                        | 5.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.44    | 6.01   | 0.22  | 9.56   | 11.1   | 10.33  | 0.39  | 12.1                        | 14.1  | 13.10  | 0.50  |  |
| PHOS                                                                                                                                                                                                                                                      | 1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.29    | 2.04   | 0.13  | 4.21   | 5.03   | 4.62   | 0.21  | 7.42                        | 8.54  | 7.98   | 0.28  |  |
| CREA                                                                                                                                                                                                                                                      | 0.494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.694   | 0.59   | 0.05  | 1.49   | 1.91   | 1.70   | 0.11  | 5.11                        | 6.55  | 5.83   | 0.36  |  |
| BUN                                                                                                                                                                                                                                                       | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.5    | 14.55  | 0.98  | 34.6   | 43.7   | 39.15  | 2.28  | 61.8                        | 77.9  | 69.85  | 4.03  |  |
| NA                                                                                                                                                                                                                                                        | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119     | 113.50 | 2.75  | 132    | 145    | 138.50 | 3.25  | 147                         | 161   | 154.00 | 3.50  |  |
| к                                                                                                                                                                                                                                                         | 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.72    | 2.57   | 0.08  | 3.86   | 4.3    | 4.08   | 0.11  | 7.27                        | 8.06  | 7.67   | 0.20  |  |
| CL                                                                                                                                                                                                                                                        | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81      | 76.00  | 2.50  | 89.8   | 101    | 95.40  | 2.80  | 112                         | 127   | 119.50 | 3.75  |  |
| CO2                                                                                                                                                                                                                                                       | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.4    | 16.55  | 1.93  | 15.5   | 24.3   | 19.90  | 2.20  | 19.9                        | 30.5  | 25.20  | 2.65  |  |
| GLUC                                                                                                                                                                                                                                                      | 53.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 65.6    | 59.50  | 3.05  | 112    | 133    | 122.50 | 5.25  | 337                         | 395   | 366.00 | 14.50 |  |
| GGT                                                                                                                                                                                                                                                       | 21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32.9    | 27.20  | 2.85  | 64.4   | 86.5   | 75.45  | 5.53  | 109                         | 143   | 126.00 | 8.50  |  |
| UA                                                                                                                                                                                                                                                        | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.98    | 3.64   | 0.17  | 4.93   | 5.85   | 5.39   | 0.23  | 8.84                        | 10.40 | 9.62   | 0.39  |  |
| MG                                                                                                                                                                                                                                                        | 0.938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.28    | 1.11   | 0.09  | 2.31   | 2.85   | 2.58   | 0.14  | 3.38                        | 4.12  | 3.75   | 0.19  |  |
| СК                                                                                                                                                                                                                                                        | 68.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.9    | 83.00  | 7.45  | 254    | 320    | 287.00 | 16.50 | 608                         | 746   | 677.00 | 34.50 |  |
| CHOL                                                                                                                                                                                                                                                      | 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121     | 110.45 | 5.28  | 165    | 197    | 181.00 | 8.00  | 240                         | 286   | 263.00 | 11.50 |  |
| TRIG                                                                                                                                                                                                                                                      | 78.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99.2    | 88.90  | 5.15  | 121    | 148    | 134.50 | 6.75  | 202                         | 238   | 220.00 | 9.00  |  |
| HDL                                                                                                                                                                                                                                                       | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34.2    | 28.90  | 2.65  | 40.2   | 58.9   | 49.55  | 4.68  | 68                          | 102   | 85.00  | 8.50  |  |
| LDH                                                                                                                                                                                                                                                       | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 135     | 123.00 | 6.00  | 165    | 197    | 181.00 | 8.00  | 370                         | 439   | 404.50 | 17.25 |  |
| C3                                                                                                                                                                                                                                                        | 75.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 104     | 89.65  | 7.18  | 102    | 138    | 120.00 | 9.00  | 129                         | 176   | 152.50 | 11.75 |  |
| C4                                                                                                                                                                                                                                                        | 13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19.5    | 16.45  | 1.53  | 17.7   | 25.5   | 21.60  | 1.95  | 23.3                        | 33.0  | 28.15  | 2.43  |  |
| IGA                                                                                                                                                                                                                                                       | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 130     | 114.00 | 8.00  | 138    | 173    | 155.50 | 8.75  | 181                         | 221   | 201.00 | 10.00 |  |
| IGG                                                                                                                                                                                                                                                       | 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 666     | 599.50 | 33.25 | 738    | 897    | 817.50 | 39.75 | 899                         | 1067  | 983.00 | 42.00 |  |
| IGM                                                                                                                                                                                                                                                       | 42.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66.1    | 54.15  | 5.98  | 71.2   | 91.3   | 81.25  | 5.03  | 83.8                        | 103.0 | 93.40  | 4.80  |  |
| Instructions on use of Mul<br>1) Pg.2 edit headers and<br>2) Pg.2 edit headers and<br>3) Pg.1 upper right enter<br>5) Pg.1 upper right enter<br>5) Observe Bias (Mean-F7<br>7) Trend Alert Flags: Occ<br>8) Observe and Documen<br>51 C (Wado be v0702*2) | Instructions on use of Multi-Level QC Assessment Template: be certain to use 'Save as' to re-name your template changes<br>1) Pg.2 edit headers and set up test system demographics - changes will appear on Pg.1<br>2) Pg.2 enter Analyte Descriptions, -25D, -25D QC limits - Mean & SD calculates on Pg.2, and Mean appears on Pg.1<br>3) Pg.1 upper right enter # Control Levelste. 1, 2, or 3<br>4) Pg.1 upper right enter # Score Trend Flag Limit, i.e. 10, 1.2, 1.5 to establish alert flagging sensitivity<br>5) Pg.1 enter QC results. click on entry box or use TAB key for vertical column date entry.<br>6) Observe: Bias (Mean-Result).2-score (Kuean-Result)/SDI, AVE z-score (Isum of Zs)#CTLS], QC 'In", QC 'Out"<br>7) Trend Alert Flags. Occur when any one Control level's z-score exceeds user-defined Trend Flag Limit<br>8) Observe: and Document Actions in Comments section when Trend Alert message, or QC 'Out" |         |        |       |        |        |        |       |                             |       |        |       |  |

# SLT\_400 Setting up the QC Template

| Enter QC    |
|-------------|
| Test Values |
| For         |
| Statistical |
| Assessment  |
| on Page-1   |

|                        | 2           | ACR LABORATORY     DAILY Q.C. STATISTICAL ASSESSMENT |       |            |           |             |                        |        |            |           |             |               |        | (          | 2            |                |       |
|------------------------|-------------|------------------------------------------------------|-------|------------|-----------|-------------|------------------------|--------|------------|-----------|-------------|---------------|--------|------------|--------------|----------------|-------|
| TEST SYSTEM:           | INTEG       | RA 400-                                              | ÷     |            |           | INTEG       | INTEGRA 400+ INTEGRA 4 |        |            |           |             |               | +      |            | Bias # C     | TLs            |       |
| CONTROLS:              | MULT        | IQUAL 1                                              |       |            |           | MULT        | MULTIQUAL 2 MULTIQUAL  |        |            |           |             |               | 3      |            |              | 3              |       |
| LOT NUMBERS:           | 45731       |                                                      |       |            | 45732     | 45732       |                        |        |            |           | 45733       |               |        |            | Trend Flag = |                |       |
| EXPIRATION:            | 02/28/18    |                                                      |       |            |           | 02/28/      | '18                    |        |            |           | 02/28/18    |               |        |            | 1.5          |                |       |
| Analyte<br>Description | L-1<br>Mean | Test<br>Value                                        | Bias  | SDI<br>(Z) | QC<br>In? | L-2<br>Mean | Test<br>Value          | Bias   | SDI<br>(Z) | QC<br>In? | L-3<br>Mean | Test<br>Value | Bias   | SDI<br>(Z) | QC<br>In?    | Ave<br>SDI (Z) | Alert |
| ALP                    | 30.45       | 24                                                   | -6.45 | -1.88      | In        | 138.00      | 123                    | -15.00 | -1.43      | In        | 267.50      | 248           | -19.50 | -1.20      | In           | -1.50          | *     |
| ALT                    | 30.50       | 29                                                   | -1.50 | -0.45      | In        | 91.30       | 83                     | -8.30  | -1.21      | In        | 194.00      | 183           | -11.00 | -0.96      | In           | -0.87          |       |

| Define QC    |
|--------------|
| System       |
| Descriptions |
| & 2SD        |
| Limits on    |
| Page-2       |

| Smart ES                  | ACR LABORATORY<br>OLS ESTABLISHED QUALITY CONTROL PARAMETERS |             |             |            |             |             |             |              | QC Lo<br>Rese | esson<br>et All |             |            |  |
|---------------------------|--------------------------------------------------------------|-------------|-------------|------------|-------------|-------------|-------------|--------------|---------------|-----------------|-------------|------------|--|
| TEST SYSTEM: INTEGRA 400+ |                                                              |             |             |            | INTEG       | RA 400      | +           | INTEGRA 400+ |               |                 |             |            |  |
| CONTROLS:                 | MULTIC                                                       | MULTIQUAL 1 |             |            |             | QUAL 2      | 2           |              | MULTIQUAL 3   |                 |             |            |  |
| LOT NUMBERS:              | 45731                                                        |             |             |            | 45732       |             |             |              | 45733         |                 |             |            |  |
| EXPIRATION:               | 02/28/1                                                      | 02/28/18    |             |            |             | 18          |             |              | 02/28/18      |                 |             |            |  |
| Analyte<br>Description    | L-1<br>-2SD                                                  | L-1<br>+2SD | L-1<br>Mean | L-1<br>1SD | L-2<br>-2SD | L-2<br>+2SD | L-2<br>Mean | L-2<br>1SD   | L-3<br>-2SD   | L-3<br>+2SD     | L-3<br>Mean | L-3<br>1SD |  |
| ALP                       | 23.6                                                         | 37.3        | 30.45       | 3.43       | 117         | 159         | 138.00      | 10.50        | 235           | 300             | 267.50      | 16.25      |  |
| ALT                       | 23.8                                                         | 37.2        | 30.50       | 3.35       | 77.6        | 105         | 91.30       | 6.85         | 171           | 217             | 194.00      | 11.50      |  |

### SLT\_400 Template Set-Up Instructions

#### Page-2 for QC Parameter Set-up

Instructions on use of Multi-Level QC Assessment Template: be certain to use 'Save as' to re-name your template changes 1) Pq.2 edit headers and set up test system demographics - changes will appear on Pq.1

- 2) Pg.2 enter Analyte Descriptions, -2SD, +2SD QC limits Mean & SD calculates on Pg.2, and Mean appears on Pg.1
- 3) Pg.1 upper right enter # Control Levels.. i.e. 1, 2, or 3
- 4) Pg.1 upper right enter z-score Trend Flag Limit, i.e. 1.0, 1.2, 1.5 to establish alert flagging sensitivity
- 5) Pg.1 enter QC results..click on entry box or use TAB key for vertical column data entry.
- 6) Observe: Bias (Mean-Result), z-score [(Mean-Result)/SD], AVE z-score [(sum of Z's)/#CTLs], QC "In", QC "Out"
- 7) Trend Alert Flags: Occur when any one Control level's z-score exceeds user-defined Trend Flag Limit
- 8) Observe and Document Actions in Comments section when Trend Alert message, or QC "Out" message appears

#### Page-1 Upper Right Settings



# Set No. of Controls for Ave Bias Calc.Set Trend Flag for Alert Sensitivity

# SLT\_400 Help Icons & Buttons

### Dan Leighton - Multi-Level QC Template Purpose:

User definable template for manual entry of QC results - instantly computes statistical indices, permitting the laboratory to assess continued accuracy and precision of test methods. QC Out, and Trend flags alert the analyst to significant biases (shifts or trends) for up to 3-levels of QC. Early actions may then be taken to address test system problems. Comments and remedial actions may be recorded below.

- SEE INSTRUCTIONS BOTTOM PG.2 MESSAGE AT TOP MAY BE ERASED



#### Dan Leighton

The z-score (SD Interval) statistic used with internal QC programs tells how many standard deviations a control value is from the mean value expected for that material. It is a calculation similar to the SDI (standard deviation index), used with External QC Programs and Proficiency Testing programs. SDI being the more familiar term is used here with z-score.

A z-score of +1.7 means that the test value was +1.7 standard deviations above the mean. A z-score of -1.7 signifies a value below the mean. Control results with (+/-) z-scores greater than the Trend Flag setting, trigger a Trend Alert flag.



# SLT\_400 Data Entry & Assessment

| TEST SYSTEM:           | INTEG       | RA 400+       | INTEGRA 400+ |            |           |             |               | INTEGRA 400+ |            |           |             |               | Bias # CTLs |            |           |                |                |
|------------------------|-------------|---------------|--------------|------------|-----------|-------------|---------------|--------------|------------|-----------|-------------|---------------|-------------|------------|-----------|----------------|----------------|
| CONTROLS:              | MULT        | IQUAL 1       |              |            |           | MULTIQUAL 2 |               |              |            | MULT      | IQUAL :     | 3             |             |            | 3         |                |                |
| LOT NUMBERS:           | 45731       |               |              |            |           | 45732       |               |              |            |           | 45733       |               |             |            |           | Trend Flag =   |                |
| EXPIRATION:            | 02/28/18    |               |              |            |           | 02/28/18    |               |              |            | 02/28/    | 18          |               |             |            | 1.5       |                |                |
| Analyte<br>Description | L-1<br>Mean | Test<br>Value | Bias         | SDI<br>(Z) | QC<br>In? | L-2<br>Mean | Test<br>Value | Bias         | SDI<br>(Z) | QC<br>In? | L-3<br>Mean | Test<br>Value | Bias        | SDI<br>(Z) | QC<br>In? | Ave<br>SDI (Z) | Trend<br>Alert |
| ALP                    | 30.45       | 27            | -3.45        | -1.01      | In        | 138.00      | 134           | -4.00        | -0.38      | In        | 270.00      | ]             |             |            | _         | -0.46          |                |
| ALT                    | 30.50       | 29            | -1.50        | -0.45      | In        | 91.30       | 88            | -3.30        | -0.48      | In        | 194.00      |               |             |            |           | -0.31          |                |
| AST                    | 36.75       | 38            | 1.25         | 0.45       | In        | 103.95      | 103           | -0.95        | -0.13      | In        | 247.00      |               |             |            |           | 0.11           |                |
| DBIL                   | 0.20        | 0.2           | 0.00         | 0.04       | In        | 1.09        | 1.0           | -0.09        | -0.52      | In        | 1.95        |               |             |            |           | -0.16          |                |
| TBIL                   | 0.47        | 0.5           | 0.03         | 0.33       | In        | 2.83        | 2.8           | -0.03        | -0.11      | In        | 6.41        |               |             |            |           | 0.07           |                |
| ALB                    | 2.37        | 2.2           | -0.17        | -1.20      | In        | 3.49        | 3.3           | -0.19        | -0.88      | In        | 4.59        |               |             |            |           | -0.69          |                |

Data is rapidly entered in QC Results Column using [Tab] key

[Reset Data] button clears QC Results, Interpretations, and QC Actions

Click Here for Link to Download Free Demo Template

# QC Out Flagging & Trend Alerts

| TEST SYSTEM:           | ABBOTT CELL-DYN 1800 |               |       |            |           |             | ABBOTT CELL-DYN 1800 |       |            |           | ABBOTT CELL-DYN 1800 |                    |       |            |           | Bias # C        | TLs            |  |
|------------------------|----------------------|---------------|-------|------------|-----------|-------------|----------------------|-------|------------|-----------|----------------------|--------------------|-------|------------|-----------|-----------------|----------------|--|
| CONTROLS:              | ABBO                 | тт            |       |            |           | ABBOTT      |                      |       |            | ABBOTT    |                      |                    |       |            | 3         |                 |                |  |
| LOT NUMBERS:           | 5327                 | 5327          |       |            |           | 5327        |                      |       |            |           | 5327                 |                    |       |            |           | Trend Flag =    |                |  |
| EXPIRATION:            | 03/11/16             |               |       |            | 03/11/16  |             |                      |       | 03/11/16   |           |                      |                    |       | 1.0        |           |                 |                |  |
| Analyte<br>Description | L-1<br>Mean          | Test<br>Value | Bias  | SDI<br>(Z) | QC<br>In? | L-2<br>Mean | Test<br>Value        | Bias  | SDI<br>(Z) | QC<br>In? | L-3<br>Mean          | Test<br>value      | Bias  | SDI<br>(Z) | QC<br>In? | A te<br>SDI (A) | Trend<br>Alert |  |
| WBC                    | 2.10                 | 2.3           | 0.20  | 1.00       | In        | 7.20        | 7.9                  | 0.70  | 1.40       | In        | 15.90                | 16.1               | 0.20  | 0.16       | In        | 0.85            | *              |  |
| RBC                    | 2.36                 | 2.10          | -0.26 | -2.60      | Out       | 4.24        | 4.09                 | -0.15 | -1.20      | In        | 5.31                 | 5.22               | -0.09 | -0.60      | In        | -1.47           | *              |  |
| HGB                    | 5.70                 | 5. <b>8</b>   | 0.10  | J. J       | In        | 11.50       | 11.7                 | 0.20  | 0.57       | In        | 16.20                | 16. <mark>6</mark> | 0.40  | 0.80       | In        | 0.59            |                |  |

- RBC: SDI(z) >2.0 (-2.60) gives a 'QC Out' Flag, as result is beyond 2SD.
- Note: Choice of QC rejection or acceptance rules must be defined by the user.
   (A references link to Westgard.com is provided on each template to facilitate choice of QC rules.)
- Observe: <u>Calibration Bias for RBC</u>... All 3 Levels on low side of mean with Ave SDI(z) = -1.47 (on average, results are falling 1.5SD below the mean)
- WBC: SDI(z) value of 1.40 exceeded the Trend Alert Flag setting of 1.0 for L-2 Control, therefore '\*' appears in Trend Alert column. Ave SDI(z) = 0.85 (Control on high side of mean warrants review of past & future QC for shifts or trends)

### Creation of Interactive "Smart" PDF Forms

2 examples of Fields with JavaScript Calculations

#### Custom calculation script:

((Math.abs((this.getField("FillText5")).value)>
(this.getField("FillText1025")).value)?"\*":((Mat
h.abs((this.getField("FillText582")).value)>
(this.getField("FillText1025")).value)?"\*";((Mat
h.abs((this.getField("FillText587")).value)>
(this.getField("FillText1025")).value)?"\*";(")))

Custom calculation script:

```
((((this.getField("FillText585")).value<(this.get
Field("FillText206")).value)&&((this.getField("
FillText585")),value>0))?"Out":(((this.getField(
"FillText585")).value>
(this.getField("FillText207")).value)?"Out":(((t
his.getField("FillText585")).value>0)?"In":"")))
```

Determines QC Trend Flag Alert (\*), or Not

Determines QC "Out" or QC "In"

### (Section-2) Setting up the QC System



Setting up the QC **Program Parameters** 

Establishing +/- 2SD QC Limits, Using (%CVh)

**Verifying Insert Ranges** < CLÍA PT Limits

**Example of Confidence** Range Too Broad for Clinical Use

# Setting up the Default QC Program

| Step | Activity                                                                                        | Purpose                                                                                                                           |
|------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1.   | Define the QC Requirements of the Assay (2 levels minimum)                                      | Select the QC controls to use,<br>Assayed, Un-assayed, 2 or 3 levels                                                              |
| 2.   | Locate published QC Means and Ranges when available                                             | Package Insert Values, On-line Insert, or Peer Group data if un-assayed                                                           |
| 3.   | Perform replicate study on QC<br>to confirm published ranges,<br>or for establishing new limits | When initially validating an assay or parallel testing a new lot of control <u>SLT 413</u> <u>SLT 415</u> or other SLT calculator |
| 4.   | Determination of Mean & QC<br>Limits for each level of control                                  | Compare Mean, SD, CV%, to Insert values, Peer or Historical Statistics                                                            |
| 5.   | Determine Total Allowable Error<br>limits for the Assay (TEa)                                   | QC limits for the assay not to exceed allowable error limits (CLIA, CVb, etc.) <u>SLT_419</u> <u>SLT_110</u>                      |
| 6.   | Replicate study (within-run)                                                                    | Ideal: $\leq$ 25% of the TEa for the Assay                                                                                        |
| 7.   | Replicate study (between-run)                                                                   | Ideal: $\leq$ 33% of the TEa for the Assay                                                                                        |

# Some QC Wisdom...

|   | Advise                                                                                                      | Comments                                                                                                                |
|---|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 1 | Do not accept without verification<br>the analyte levels (insert limits)<br>given on commercial QC Products | QC limits given with commercial QC products are often too broad for clinical use (see example slide -32)                |
| 2 | Verify given insert limits are 2SD or 3SD, often they are 3SD                                               | SLT Templates require 2SD limits,<br>Verify SD with <u>SLT_111 Template</u>                                             |
| 3 | Do not use limits that exceed the<br>CLIA Proficiency Testing Limits, or<br>risk failing PT                 | Analytical Allowable CLIA Error (TEa)<br>Assay limits, and Calculator are<br>available on the <u>SLT_110 Template</u> . |
| 4 | Biological Variation tables are another source of Error Limits                                              | (CVb) limits tables may be found on the Westgard website                                                                |
| 5 | Read The Control Product Insert<br>Instructions & disclaimers<br>(Examiners will read them)                 | Adhering to stability claims is helpful<br>for avoiding unnecessary rejections<br>and troubleshooting                   |
| 6 | Examiners read QC Procedures                                                                                | and hold you to the written word                                                                                        |

### Establishing Your Lab's +/- 2SD QC Limits

|   | Resource                                                                                                                               | Comments / Reference Links                                                                     |
|---|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 1 | "Chemistry Guideline for Establishing<br>New Control Lot Means and Quality<br>Control (QC) Ranges Through Parallel                     | Click on Reference Link:<br>Establishing Chemistry QC Ranges                                   |
|   | Testing and Historic Coefficient of<br>Variation (%CVh)"                                                                               | SMILE Link to pSMILE<br>Patient Safety Monitoring & International Laboratory Evaluation        |
|   | Authored by Kurt Michael and Paul Richardson                                                                                           |                                                                                                |
| 2 | "Best Practices in Establishing Quality<br>Control Parameters"<br>Authored by M. Laura Parnas, PhD<br>Source: Clinical Laboratory News | Click on Reference Link:<br><u>Best Practices in Establishing QC</u><br><u>Parameters</u>      |
| 3 | "Planning a Statistical Quality Control<br>Strategy"<br>Authored by Greg Miller, PhD<br>Source: AACC 2016 Workshop                     | Click on Reference Link:<br><u>"Planning a Statistical Quality Control</u><br><u>Strategy"</u> |
| 4 | SmartLabTools Templates to Calculate<br>+/- 2SD Limits using (%CVh)                                                                    | Templates SLT_417, SLT_111.d                                                                   |
# SLT\_111 to Calculate 2SD Limits (%CVh)

#### My elnserts target means, Bio-Rad QC <a href="http://www.qcnet.com/">http://www.qcnet.com/</a>,



37

# Verify QC Limits ≤ CLIA PT Limits



#### Example: Insert Limits (3SD), Range > CLIA

| C INSERT                                     |                            |                                                 |                                 |                                |                          | U                          |                     | $\Phi$                                     |                                   | ( | Confidence range                                   |                         | 1 SD          |                                                                            |
|----------------------------------------------|----------------------------|-------------------------------------------------|---------------------------------|--------------------------------|--------------------------|----------------------------|---------------------|--------------------------------------------|-----------------------------------|---|----------------------------------------------------|-------------------------|---------------|----------------------------------------------------------------------------|
| SODIUM-E                                     |                            |                                                 |                                 |                                |                          | mmol/L                     |                     | 1                                          | 50                                |   | 135 - 16                                           | 65                      |               | 5                                                                          |
|                                              |                            |                                                 | •                               |                                |                          | mg/dL                      | 1.0. \              | 3                                          | 45                                |   | 309 - 38                                           | 31                      |               | 12                                                                         |
|                                              |                            |                                                 |                                 |                                |                          | mEq/L (mva                 | al/L)               | 1                                          | 50                                |   | 135 - 16                                           | 65                      |               | 5                                                                          |
|                                              | 1                          | Enter Kr                                        | nown M                          | /lean an                       | nd SD to                 | Calculate C\               | /%, 2               | SD, 3SD Lim                                | its                               |   |                                                    |                         |               |                                                                            |
| (SLT_111)                                    | _ [                        | Cont                                            | rol<br>el                       | Me                             | an                       | 1SD                        | [                   | - 2SD                                      | +2SD                              |   | - 3SD                                              | +3SD                    |               | CV%                                                                        |
| "Confidence Ran                              | ge"                        | Level                                           | l-1                             |                                |                          |                            |                     |                                            |                                   |   |                                                    |                         |               |                                                                            |
| is 3SD Limits                                |                            | Level                                           | I <b>-</b> 2                    | 150                            | .00                      | 5.00                       |                     | 140.00                                     | 160.00                            |   | 135.00                                             | 165.00                  |               | 3.33                                                                       |
| (SLT_110 Calc. CLIA Limits)                  |                            |                                                 |                                 |                                |                          |                            |                     |                                            |                                   |   |                                                    |                         |               |                                                                            |
| (SLT_110 Calc. C                             | LIA Li                     | imits)                                          | CLI                             | A PT I                         | Limits                   | i                          | lf us               | se CLIA I                                  | РТ (%)                            |   | lf us                                              | e CLIA                  | РТ            | (Value)                                                                    |
| (SLT_110 Calc. C<br>Control Level            | LIA Li<br>M                | <i>mits)</i><br>lean                            | CLI/                            | A PT I<br>t % L                | Limits<br>imit V         | al Lo                      | lf us<br>ow         | e CLIA F<br>High                           | PT (%)<br>1SD                     |   | lf us<br>Low                                       | e CLIA<br>Hig           | PT<br>h       | (Value)<br>1SD                                                             |
| (SLT_110 Calc. C<br>Control Level<br>Level-1 | LIA Li<br>M<br>15          | i <mark>mits)</mark><br>lean<br>50.00           | CLI/<br>Limi                    | A PT I<br>t % L                | Limits<br>imit V<br>4.00 | al Lo<br>150               | lf us<br>ow<br>0.00 | Be CLIA F<br>High<br>150.00                | PT (%)<br>1SD                     |   | lf us<br>Low<br>146.00                             | e CLIA<br>Hig<br>0 154. | PT<br>h<br>00 | (Value)<br>1SD<br>2.00                                                     |
| (SLT_110 Calc. C<br>Control Level<br>Level-1 | LIA Li<br>M<br>15<br>Sodiu | i <mark>mits)</mark><br>Iean<br>50.00<br>Im (mm | CLI/<br>Limi                    | A PT I<br>t % L                | Limits<br>imit V<br>4.00 | al Lo<br>150               | lf us<br>ow<br>0.00 | e CLIA F<br>High<br>150.00<br>CH-0         | PT (%)                            |   | If us<br>Low<br>146.00                             | e CLIA<br>Hig<br>0 154. | PT<br>h<br>00 | (Value)<br><u>1SD</u><br>2.00<br>127 - 136                                 |
| (SLT_110 Calc. C<br>Control Level<br>Level-1 | LIA Li<br>M<br>15<br>Sodiu | i <mark>mits)</mark><br>lean<br>50.00<br>im (mm | CLI/<br>Limi                    | A PT I<br>t % L                | Limits<br>imit V<br>4.00 | al Lo<br>150               | lf us<br>ow<br>0.00 | High<br>150.00<br>CH-0<br>CH-0             | PT (%)<br>1SD<br>1<br>1<br>2      |   | If us<br>Low<br>146.00                             | e CLIA<br>Hig<br>0 154. | PT<br>h<br>00 | (Value)<br>1SD<br>2.00<br>127 - 136<br>157 - 166                           |
| (SLT_110 Calc. C<br>Control Level<br>Level-1 | LIA Li<br>M<br>15<br>Sodiu | i <b>mits)</b><br>Iean<br>50.00<br>Im (mm       | CLI/<br>Limi                    | A PT I                         | Limits<br>imit V<br>4.00 |                            | lf us<br>ow<br>0.00 | E CLIA F<br>High<br>150.00<br>CH-0<br>CH-0 | PT (%)<br>1SD<br>1<br>1<br>2<br>3 |   | If us<br>Low<br>146.00<br>133<br>163<br>199        | e CLIA<br>Hig<br>0 154. | PT<br>h<br>00 | (Value)<br>1SD<br>2.00<br>127 - 136<br>157 - 166<br>195 - 204              |
| (SLT_110 Calc. C<br>Control Level<br>Level-1 | LIA Li<br>M<br>15<br>Sodiu | imits)<br>lean<br>50.00<br>im (mm<br>Use o      | CLI/<br>Limi<br>nol/L)<br>f CLI | A PT I<br>t % L<br>**<br>A Lim | Limits<br>imit V<br>4.00 | al Lo<br>150<br>API PT Pro | lf us<br>bw<br>0.00 | CH-0<br>CH-0<br>m                          | PT (%)<br>1SD<br>1<br>2<br>3<br>4 |   | If us<br>Low<br>146.00<br>133<br>163<br>199<br>150 | e CLIA<br>Hig<br>0 154. | PT<br>h<br>00 | (Value)<br>1SD<br>2.00<br>127 - 136<br>157 - 166<br>195 - 204<br>146 - 154 |

Manufacturer "Confidence range" SD is 2.5 x that allowed by CLIA

# Beware – Manufacturer's QC Ranges

| Field E              | Curre    | nt Worklist (<br>QC Guidance | QC Results<br>for Sodium | Recoi          | mmend      | set to 25D<br>136-156 |
|----------------------|----------|------------------------------|--------------------------|----------------|------------|-----------------------|
|                      | Lot      | 1703701                      | Expiration Date          | )              | 04/10/2019 | Context               |
|                      | Last Run |                              | 01/18/2019 16:53:53      |                |            |                       |
| <b>Target</b><br>146 |          | Confidence Pange<br>142-150  | <b>CV</b><br>0           | <b>SD</b><br>0 | Low        | Target<br>            |

The use of the manufacturer ranges, package insert ranges, and other externally imposed ranges is highly discouraged. No matter how the manufacturer sweet-talks you about using a wider range, the best practice is to use YOUR RANGE and YOUR MEAN. Whenever the manufacturer tries to get you to use a different mean or a different (wider) mean, they are not trying to control the method, they are trying to control you (and get you to stop asking for technical support).

Westgard: Questions and Answers on QC Frequency, and QC in Hematology https://www.westgard.com/questions-qc-hematology.htm

# Consequences of Wider QC Limits... Few or No Flags on Instrument Tapes



# All Levels RBC Biased to Low Side, Resulting in Unsuccessful PT 3x in a Row!



# Severe Sanctions for Failing RBC PT

Following is a listing of the final sanctions against Laboratory's CLIA certificate as a result of the subsequent occurrence of unsuccessful participation in proficiency testing for the analyte erythrocyte count (RBC): Limitation of the laboratory's CLIA certificate for the analyte RBC for not less than six months effective October 13, 2006; a Directed Plan of Correction effective October 11, 2006; a Civil Money Penalty effective October 11, 2006 in the amount of \$3,000 per day of non-compliance until the Limitation of the laboratory's approval to receive Medicare payments for all laboratory services effective October 13, 2006.

In accordance with 42 C.F.R. § 493.1850(a)(2), information regarding the above imposed sanctions against the laboratory's CLIA certificate will appear in the Laboratory Registry for the calendar year in which the actions are imposed. In addition, pursuant to 42 C.F.R. § 493.1844(g)(1), we will notify the general public by means of a notice published in a local newspaper.

# CMS - Corrective Actions & Measures Directive (Submit with 2567 Response)

- Documentation showing what corrective actions(s) have been taken for patients found to have been affected by the deficient practice;
- How the laboratory has identified other patients having the potential to be affected by the same deficient practice and what corrective action(s) have been taken;
- What measure has been put into place or what systemic changes have been made to ensure the deficient practice does not recur, and,
  - How the corrective action(s) are being monitored to ensure the deficient practice does not recur.

### (Section-3) Policies & Procedures



**QC Procedure for Results Entry & Statistical Assessment Reports** 

QC Results Flagging, Alert Messages for Outliers, Shifts, Trends

Westgard  $1_{3s}$  and  $2_{2s}$ Control Rules, and **References, Sigma Rules** 

**OOC Procedure & Corrective Action Documentation** 

**Binders for QC Reviews &** Summaries, Review Forms, **Remote PDF Results with** 

#### P&P-1: Results Entry & Statistical Assessment

- QC Results from select instrument quality control printouts, or worksheets, are manually entered into the designated <u>SmartLabTools</u><sup>TM</sup> QC template for instant statistical assessment and interpretation.
- Entered results are evaluated against the assigned 2SD QC limits which may be verified product insert or userdefined ranges. The Analytical Bias and Standard Deviation Index (SDI) are calculated and displayed.
- "QC In" interpretation appears when QC results are acceptable, else "QC Out", and alarm messages appear to Alert the analyst when there is a method problem.

### P&P-2: QC Results Flagging

- 4. An important element of the SLT QC System is the immediate flagging of results which have exceeded Trend Flag\* setting, signaling and early warning to a potential QC Shift or Trend, and 'QC Out' flagging whenever user defined 2SD acceptance limits are exceeded.
- 5. An SDI of > Trend Flag setting is denoted with an asterisk (\*), whereas an SDI of >2.0 is of greater concern and shows as 'Out' in the (QC In?) column. Flagged results are immediately recognizable for further interpretation against the laboratory's defined QC rules. Investigation or Corrective Action may be warranted, and can be documented at the bottom of the QC template.

### P&P-3: Statistical Assessment (Trend Alert Flags)

6. With Alert Flagging (\*), the following message appears at the bottom of the page when set <u>SDI limits are exceeded for any single QC event</u>:

"Trend Alert - Warrants Attention"

7. Trends are defined as a series of controls above or below the mean, remain within limits, and indicates systematic error.

Flagged (\*) analytes need be reviewed further by the analyst for previously flagged results for the same control, and for flagged results of related controls (other levels).

(Alerts to results exceeding set SDI limits, but does not track QC results from consecutive runs)

8. The "Ave SDI (z-score)" helps when evaluating systematic error such as calibration bias.

#### P&P-4: Statistical Assessment ("QC Out")

9. Results that exceed 2.0 SDI (>2.0 standard deviations) are flagged as "QC Out" and require the analyst to examine the condition to see which QC Rules may have been violated (see Control Rules Guidelines), and if warranted, take remedial measures to correct the condition.

The following alert message appears at lower page:

"QC Out - Requires Investigation" SLT\_400 "SDI >2.0 Warrants Investigation" SLT\_105

#### P&P-4: Statistical Assessment ("QC Out")

**Comment:** "An analytical run should not be rejected if a single quality control value is outside the ±2s QC limits but within the ±3s QC limits. Approximately 4.5% of all valid QC values will fall somewhere between ±2 and ±3 standard deviation limits. Laboratories that use a ±2s limit frequently reject good runs. That means patient samples are repeated unnecessarily, labor and materials are wasted, and patient results are unnecessarily delayed."

Comment Source: BioRad – QC Education, QC Workbook 2008, Authored by: Greg Cooper, CLS, MHA

### P&P-5: Defining Lab's Own QC Rules

| Rule              | Some examples of Westgard Rules                                                |
|-------------------|--------------------------------------------------------------------------------|
| * 1 <sub>3s</sub> | One QC event falls beyond either +3SD or -3SD                                  |
| * 2 <sub>2s</sub> | Two consecutive QC events fall beyond the same 2SD limit (either +2SD or -2SD  |
| 4 <sub>1s</sub>   | Four consecutive QC events fall beyond the same 1SD line (either +1SD or -1SD) |
| R <sub>4s</sub>   | Two consecutive QC events fall a distance of 4SD from each other               |
| 10 <sub>x</sub>   | Ten consecutive QC events fall to the same side of the mean (or target)        |

- Westgard Rules may refer to within a QC event (eg, comparing results of the high and the low QC material) or across QC events (eg, comparing the prior high QC material result with the current high QC material result).
- \* Suggested Control Rules when evaluating SLT QC Statistical Assessment Templates
- Each laboratory must establish it's own QC rules and practices, as approved by the Laboratory Director.
- Refer to <u>Westgard.com</u> for QC Lessons and use of QC Rules <u>https://www.westgard.com/lesson74.htm</u> <u>https://www.westgard.com/lesson18.htm</u>

#### Sigma Rules - Based on Assay Quality Performance



The Westgard Sigma Rules diagram(s) makes it easy to select the **right** control rules and the **right number of control measurements**.





### P&P-6: The 1<sub>2s</sub> QC Rule not cause for rejection

#### Accept Run and Report Patient Results if:

- 1. All controls are within  $\pm 2$ SD of the established mean.
- (1<sub>25</sub>) One control is within ±2SD second control >2SD, but within ±3SD ( < 3.0 SDI ), acceptable for first time only.</li>
   Treat the outlier as a warning, and be alert to potential 2<sub>25</sub> should same QC be >2SD next run.

# P&P-7: Using $1_{3s}$ and $2_{2s}$ QC Rules

#### **Reject a run and Take Corrective Action If:**

- 1. One control is greater than  $\pm 3$ SD (3.0 SDI) from the established mean. (1<sub>35</sub>) rule violation.
- 2. Two controls for same analyte are greater than  $\pm 2$ SD from the established mean. (  $2_{2S}$  ) rule violation
- 3. Refer to the lab's Q.C. Corrective Action Procedure, and Documentation Procedure if run is rejected.
- 4. Flagged analytes \* *Trend Alert*, will be monitored and used as a "<u>warning</u>" to investigate potential QC problems.
- 5. Shifts and Trends in control values are not suggested as criteria for rejecting or accepting control results.

### P&P-8: Daily QC Statistical Assessment Report

- 1. The 'Daily QC Statistical Assessment Report' is visually analyzed, any necessary actions taken, printed, signed by the analyst, and filed in the Daily QC Review Binder for further review by the Director or his designee.
- 2. The 'Daily QC Statistical Assessment Report' is also 'Saved' to the designated folder in the web application 'Dropbox' for off-site review by the Technical Supervisor. QC Report is saved using file-name and testing date. (examples to follow)
- 3. For next run/day use, select prior run/day report, and use the *[Reset Data]* button to clear prior test data, interpretation, and corrective actions. Enter current data, and repeat process.

#### P&P-9: Out of Control Corrective Measures

- If the results of the controls are beyond established limits as indicated by being flagged as 'Out' by the analyzer or SmartLabTools<sup>™</sup> QC software, and meet 2<sub>2s</sub> or 1<sub>3s</sub> run rejection criteria, then investigate the condition before repeating the controls. (Refer to Laboratory's own QC Rules and Repeat Criteria)
- If QC is still out, corrective action should be taken and documented. Some examples of corrective action are preparation of fresh controls or reagents, checking expiration dates and lot numbers, checking calibration and proper operation of the instrument, cleaning the instrument, etc.

#### P&P-10: Out of Control Measures (Cont.)

- 3. If the problem is limited to the control only, no further steps need be taken other than to demonstrate satisfactory performance with another control. *The repeat value may be documented by typing into a blank section of the QC Template.*
- 4. If the problem is corrected, all specimens run from the time the problem was detected must be <u>re-run</u>. Specimens run before the problem was identified and when controls were "in control" need not be re-run. Careful investigation needs be done to identify the exact point when the problem occurred.

#### P&P-11: Out of Control Measures (Cont.)

5. If the problem cannot be identified, results cannot be released. Instrument should be shut down and technical support should be called for troubleshooting and service. Use the backup equipment when available. If alternate testing devices are not available, notify the Lab Director or Designee immediately.

#### P&P-12 Corrective Action - Documentation

Document Q.C. problems and corrective action on the '*Daily QC Statistical Assessment Report*' or a designated Instrument '*Corrective Action Form*', as below. (SLT 200)



#### P&P-13 The Daily QC Review Binder Contents

- 1. <u>'Daily QC Review Binders'</u> are prepared for each Test System, to contain the daily QC reports
- 2. <u>'Daily QC Assessment Reports'</u> are hole-punched and saved in the month-tabbed 2"-3" Binders (See SLP 500 Binders)
- 3. Optionally include analyzer QC printouts with the Daily Reports
- 4. Include Corrective Actions, QC Inserts, Peer Reports, QC Parallel Testing Statistics, Service Reports, in this binder or other designated binder

# Daily QC Signed & Filed in Binders



### Templates – Binder Cover & 2" Spines





Click Link For Free Download

# **Binders Organized for an Inspection**



#### P&P-14 Monthly QC Review - Summary

- Be sure that EACH '<u>Daily QC Assessment Report</u>' has been reviewed and initialed by the Testing Person & a responsible Lab Supervisor, TS, TC, or Director
- Include an EOM '<u>Monthly QC Review Summary</u>' describe the significant QC exceptions (if any) that occurred for that month. (See SLT 202)

#### P&P-15 L-J Graph – Screen Reviews

- 1. Weekly, L-J Graph <u>Screen Reviews</u> of Quality Control Files on the Clinical Analyzers or LIS are recommended when available.
- 2. Monthly, L-J Charts may be viewed only, <u>selectively printed</u>, or all printed.
- 3. Documentation of L-J reviews by Supervisory Staff may be recorded on the <u>'SLT\_210 Levey-Jennings Review Log'.</u>
- 4. Review logs may be kept in the 'Daily QC Review Binder'.

#### P&P-16 Monthly QC Results Reviews

1. Monthly, or more frequently, as warranted, any additional QC information is gathered and reviewed alongside the accumulation of *'Daily QC Statistical Assessment Reports'*.

2. When available, include in the monthly review;

- a) QC Statistical Summaries from instruments or LIS
- b) Graphical representations from instruments or LIS
- c) Peer reports from inter-laboratory QC programs (EQC)
- d) Proficiency Results (EQA)
- •) Updated QC product inserts and notices
- 3. Reviews should include evaluation of Control Mean and SD assignments, and updated when indicated.

(SLT\_419 is a useful tool when evaluating QC limits)

#### P&P-17 QC Review & Approval Form

- 1. Monthly, an <u>'SLT 202 Quality Control Review and Approval</u> <u>Form</u>' is attached to the front of each QC product's monthly collection of 'Daily QC Statistical Assessment Reports', as well as any additional QC documents.
- 2. Document monthly review comments, with notation of QC exceptions, and actions taken or recommended, & follow-ups.
- 3. Emphasis on maintenance of acceptable QC performance, and effectiveness of remedial measures taken for QC exceptions.
- 4. Reviewers should consist of Testing Personnel, Supervisor, Technical Supervisor, as well as Director and/or designee.

# **QC** Review Forms

| MONTHLY QC REVIEW                                                        |   |
|--------------------------------------------------------------------------|---|
| QUALITY CONTROL & INSTRUMENT MAINTENANCE RECORDS REVIEW AND APPROVAL     |   |
| QC / Maintenance for the Month / Year: September, 2016                   |   |
| DEPARTMENT: General Laboratory                                           |   |
| ABX Hematology Affinion                                                  |   |
|                                                                          |   |
|                                                                          |   |
|                                                                          |   |
| No Exceptions Noted, QC O.K.                                             |   |
| Exceptions Noted:                                                        |   |
| Comments/Overview:                                                       |   |
|                                                                          |   |
|                                                                          |   |
|                                                                          |   |
|                                                                          |   |
|                                                                          |   |
|                                                                          |   |
|                                                                          |   |
|                                                                          |   |
|                                                                          |   |
| Click Here to download                                                   | E |
| Click Here to download                                                   |   |
| Click Here to download<br>Free QC Review Forms                           |   |
| Click Here to download<br>Free QC Review Forms                           |   |
| Click Here to download<br>Free QC Review Forms<br>from SmartLabTools.com |   |
| Click Here to download<br>Free QC Review Forms<br>from SmartLabTools.com |   |
| Click Here to download<br>Free QC Review Forms<br>from SmartLabTools.com |   |
| Click Here to download<br>Free QC Review Forms<br>from SmartLabTools.com |   |

| CLS.                  | Date. |  |
|-----------------------|-------|--|
| Technical Supervisor: | Date: |  |
| Staff / Other:        | Date: |  |
| Laboratory Director:  | Date: |  |
|                       |       |  |

SLT\_202 SmartLabTools.com

| RESET |  |
|-------|--|

S

#### REPLACE WITH NAME OF LABORATORY MONTHLY QUALITY CONTROL SUMMARY

| LOCATION                                              | MONTH AND YEAR                | PREPARED BY                                      |
|-------------------------------------------------------|-------------------------------|--------------------------------------------------|
|                                                       |                               |                                                  |
|                                                       |                               |                                                  |
| DAILY QUALITY CONTROL REV<br>PROBLEMS NOTED THIS MONT | TEW:<br>H IN THIS SECTION:    | DAILY OC - NO PROBLEMS NOTED                     |
| Temperatures:                                         |                               |                                                  |
|                                                       |                               |                                                  |
|                                                       |                               |                                                  |
| Personnel Compliance:                                 |                               |                                                  |
|                                                       |                               |                                                  |
| Controls (state test, control name, level             | ).                            |                                                  |
| Connois (state lest, connor name, lever               | y.                            |                                                  |
|                                                       |                               |                                                  |
| Standards (state test, manufacturer, leve             | el):                          |                                                  |
|                                                       |                               |                                                  |
|                                                       |                               |                                                  |
| Equipment verification checks (indicate               | e instrument and serial numbe | i):                                              |
|                                                       |                               |                                                  |
| Daily OC Statistical Accordingty L. L                 | Duality Control Charter       |                                                  |
| Daily QC Statistical Assessments, L-5                 | Quality Condition Charles.    |                                                  |
|                                                       |                               |                                                  |
| Other quality control issues:                         |                               |                                                  |
|                                                       |                               |                                                  |
|                                                       |                               |                                                  |
| Corrective action(s) taken:                           |                               |                                                  |
|                                                       |                               |                                                  |
| INTERLABORATORY COMPARISO                             | N PEDOPTS                     | and noted an inter laboratory comparison re      |
| Problems noted (indicate test(s), metho               | d(s), control name(s):        | ems noted on inter-laboratory comparison reports |
|                                                       |                               |                                                  |
|                                                       |                               |                                                  |
|                                                       |                               |                                                  |
|                                                       |                               |                                                  |
| Any QC problems noted which require                   | further review by the Technic | al Consultant or Lab Director                    |
|                                                       |                               |                                                  |
|                                                       |                               |                                                  |
|                                                       |                               |                                                  |
| Dimeter Projem                                        | Data de TC Paris              | Details                                          |
| Director Neview:                                      | _ Dated: IC Kevie             | w:Dated:                                         |
|                                                       |                               | <b>_</b>                                         |
| SLT_205 SmartLabTools.com                             | Reset                         |                                                  |

# QC Review Forms (cont.)

#### NAME OF LABORATORY GOES HERE

Quality Assurance / Quality Control Review Form

| leviewer:                                                                                              |       |
|--------------------------------------------------------------------------------------------------------|-------|
| Ionth of Review: September - Review Period:                                                            |       |
| lotes:                                                                                                 |       |
|                                                                                                        |       |
| Use This Form To Comment on Monthly QC or QA Iss<br>'Save' your Notes to a Dropbox QA/QC Review Folder | ues   |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
|                                                                                                        |       |
| Reviewed by:                                                                                           | Reset |
| aboratory Staff:                                                                                       | Date: |
| echnical Consultant/Supervisor:                                                                        | Date: |
| Director:                                                                                              | Date: |
| SLT_215 SmartLabTools.com                                                                              |       |

#### **REPLACE WITH NAME OF LABORATORY**

Quality Assurance Review Form

Review: QC REVIEW PLAN EFFECTIVENESS

|--|

Month of Review: December 

Review Period: 2018 YTD

Daily QC Statistical Assessment Reports have been reviewed and filed in the Monthly QC Binders, Monthly QC Reports, QC Logs, Statistical Summaries, Levey-Jennings charts and QC policies have been reviewed. Lab QC was submitted to vendors for Peer Reports,

Performance Measures Related to Method:

| 1. Quality Control Satisfactory & Performed per analyte procedure  | 🖌 Met | Not Met |
|--------------------------------------------------------------------|-------|---------|
| 2. QC is being documented in appropriate places                    | 🖌 Met | Not Met |
| 3. QC logs are being maintained in an organized manner             | ✓ Met | Not Met |
| 4. QC Inserts and other QC records maintained for 3 years          | 🖌 Met | Not Met |
| 5. QC monthly reviews are being performed in a timely manner       | ✓ Met | Not Met |
| 6. QC Corrective Actions have been documented and reviewed         | 🖌 Met | Not Met |
| 7. Instruments/Analytes are being Calibrated as required           | 🖌 Met | Not Met |
| 8. Temperatures and Maintenance Logs are up-to-date                | ✓ Met | Not Met |
| 9. QC Rules are being followed                                     | 🖌 Met | Not Met |
| 10. IQCP performed on schedule                                     | ✓ Met | Not Met |
| 11. Cal-Verification(s) are performed as needed or min. each 6mos. | 🖌 Met | Not Met |
| 12. Lab Personnel demonstrate competency with QC processes         | 🖌 Met | Not Met |

Conclusion: /// Example of QC Review Plan Effectiveness Template ///

Reset

#### Reviewed by:

| Laboratory Staff:                | Date: |
|----------------------------------|-------|
| Technical Consultant/Supervisor: | Date: |
| Director:                        | Date: |

SLT 236 SmartLabTools.com

# QC Review Forms (cont.)

#### NAME OF LABORATORY / Analyzer WEEKLY QC L-J SCREEN REVIEW LOG SHEET

SLT\_210 SmartLabTools.com

| Date/<br>By CLS                                | Review<br>Period                                                                | QC L-J Screen Review Fi<br>Indicate Any Tests / QC Files requiring                                                        | ndings<br>Supervisor Attention           |              |                                    |             |            |
|------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|------------------------------------|-------------|------------|
| DWL                                            | 9/25 - 9/30                                                                     | You can type text here [Reset] Clears                                                                                     | s the Form                               |              |                                    |             |            |
|                                                |                                                                                 |                                                                                                                           |                                          | Replace with | name of Labora<br>Line 2<br>Line 3 | atory       | Clear Form |
|                                                |                                                                                 |                                                                                                                           | Control -                                | Lot Number   | Expiration Date                    | Date in Use | Other      |
|                                                |                                                                                 |                                                                                                                           | Reagent<br>Calibrator<br>Control         |              |                                    |             |            |
|                                                |                                                                                 |                                                                                                                           | CALIBRATORS,                             | [            |                                    |             |            |
|                                                |                                                                                 |                                                                                                                           | CONTROLS, OR                             |              |                                    |             |            |
|                                                |                                                                                 |                                                                                                                           | REAGENTS                                 |              |                                    |             |            |
|                                                |                                                                                 |                                                                                                                           |                                          |              |                                    |             |            |
|                                                |                                                                                 |                                                                                                                           |                                          |              |                                    |             |            |
|                                                |                                                                                 |                                                                                                                           | велосито                                 |              |                                    |             |            |
| USE THIS FO<br>CORRECTIVE<br>BINDER.<br> <br>Y | RM TO NOTE ANY ANA<br>ACTIONS ON THE INST<br>ine-1<br>ou can type more<br>ine-3 | LYTES THAT REQUIRE ATTENTION BY THE LABORATORY SUPER<br>RUMENT SPECIFIC CORRECTIVE ACTION FORMS LOCATED IN T<br>text here | VISOR. DOCUMENT<br>HE CORRECTIVE ACTIONS |              |                                    |             |            |

# (Section-4) Basic QC Statistics Calculators

| Smart LabTools         | CAL                                                              | CULATE C                                                                                                                                                         | C MEAN(S | s), SD, CV | %, QC RAI | NGES  | 8     |  |  |
|------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-----------|-------|-------|--|--|
| LONGHR JOHN MICK SHIDK |                                                                  | < REPLACE WITH NAME OF LABORATORY >                                                                                                                              |          |            |           |       |       |  |  |
|                        | PRE                                                              | PRECISION STUDIES FOR NEW CONTROL LOT#                                                                                                                           |          |            |           |       |       |  |  |
|                        | DESCRIPTI<br>INSTRUME<br>METHOD:<br>CONTROL:<br>LOT #:<br>OTHER: | DESCRIPTION: GLUCOSE<br>INSTRUMENT: DIMENSION XPAND PLUS<br>METHOD: ENZYMATIC<br>CONTROL: BIORAD CHEMISTRY - NORMAL CONTROL<br>LOT #: 12345<br>OTHER: EXP. 10/17 |          |            |           |       |       |  |  |
|                        | I.D.                                                             | 1-20                                                                                                                                                             | I.D.     | 21-40      | I.D.      | 41-60 |       |  |  |
|                        | 1                                                                | 102                                                                                                                                                              | 21       | 97         | 41        | 98    |       |  |  |
|                        | 2                                                                | 103                                                                                                                                                              | 22       | 95         | 42        | 101   |       |  |  |
|                        | 3                                                                | 99                                                                                                                                                               | 23       | 104        | 43        | 104   |       |  |  |
|                        | 4                                                                | 95                                                                                                                                                               | 24       | 101        | 44        | 100   |       |  |  |
|                        | 5                                                                | 104                                                                                                                                                              | 25       | 105        | 45        | 99    |       |  |  |
|                        | 6                                                                | 107                                                                                                                                                              | 26       | 100        | 46        | 106   |       |  |  |
| V V                    | 7                                                                | 103                                                                                                                                                              | 27       | 96         |           |       |       |  |  |
|                        | 8                                                                | 100                                                                                                                                                              | 28       | 104        |           |       |       |  |  |
|                        | 9                                                                | 98                                                                                                                                                               | 29       | 103        |           |       |       |  |  |
|                        | 10                                                               | 97                                                                                                                                                               | 30       | 99         |           |       |       |  |  |
| $O \ge$                | 11                                                               | 101                                                                                                                                                              | 31       | 107        |           |       |       |  |  |
| E O                    | 12                                                               | 105                                                                                                                                                              | 32       | 101        |           |       | 6     |  |  |
|                        | 13                                                               | 96                                                                                                                                                               | 33       | 104        |           |       | l ü   |  |  |
|                        | 14                                                               | 104                                                                                                                                                              | 34       | 99         |           |       | l SE  |  |  |
|                        | 15                                                               | 110                                                                                                                                                              | 35       | 103        |           |       | LA LA |  |  |
|                        | 16                                                               | 99                                                                                                                                                               | 36       | 107        |           |       | S C   |  |  |
| 19                     | 17                                                               | 103                                                                                                                                                              | 37       | 99         |           |       | ă     |  |  |
| 19                     | Q                                                                | UALITY                                                                                                                                                           | CONTR    | OL LIM     | ITS       | L     | .ow   |  |  |

2 STAND

3 STAND

| N =        | 19    |
|------------|-------|
| MEAN =     | 26.45 |
| 1 SD =     | 1.63  |
| CV % =     | 6.15  |
| GEO MEAN = | 26.41 |

| QUALITY CONTROL LIMITS  | LOW   | HIGH      |  |  |
|-------------------------|-------|-----------|--|--|
| 1 STANDARD DEVIATION =  | 24.83 | 28.08     |  |  |
| 2 STANDARD DEVIATIONS = | 23.20 | 29.71     |  |  |
| 3 STANDARD DEVIATIONS = | 21.57 | 31.33     |  |  |
| Clear Data              | Rese  | Reset All |  |  |
### QC Statistics – Multiple Analytes (8 x 20dp)

|                | Smar       | rt 📰              | PR        | ECISION     | AND AC    | CURACY       | STATIS   | TICAL AS    | SESSME      | NT         |       |        |
|----------------|------------|-------------------|-----------|-------------|-----------|--------------|----------|-------------|-------------|------------|-------|--------|
|                | Complexion | rns marder Simple |           |             |           |              |          |             |             |            |       |        |
|                |            | ?                 |           | RALLEL TE   | STING NE  |              |          |             |             |            |       |        |
|                | A          | nalyte :          | WBC       | RBC         | HGB       | HCT          | PLT      | GRAN %      | LYMP %      | MID %      |       |        |
|                | QC M       | aterial :         | HORRIBA   | HORRIBA     | HORRIBA   | HORRIBA      | HORRIBA  | HORRIBA     | HORRIBA     | HORRIBA    |       |        |
|                | Lot N      | umber :           | MX401L    | MX401L      | MX401L    | MX401L       | MX401L   | MX401L      | MX401L      | MX401L     |       |        |
|                | Expi       | iration :         | 11/05/16  | 11/05/16    | 11/05/16  | 11/05/16     | 11/05/16 | 11/05/16    | 11/05/16    | 11/05/16   |       |        |
|                | Target     | Value :           | 1.90      | 2.30        | 6.0       | 16.1         | 75       | 26.5        | 63.0        | 10.5       |       |        |
|                | R          | anges :           | 1.5 - 2.3 | 2.15 - 2.45 | 5.6 - 6.4 | 14.1 - 18.1  | 55 -95   | 19.5 - 33.5 | 55.0 - 71.0 | 4.5 - 16.5 |       |        |
|                | Ru         | IN                | L4        | L-1         | L-1       | L-1          | L-1      | L-1         | L-1         | L-1        |       |        |
|                | 1          |                   | 2.0       | 2.31        | 6.0       | 16.2         | 75       | 26.9        | 59.1        | 10.6       |       |        |
|                | 2          | 2                 | 1.9       | 2.30        | 6.1       | 16.2         | 75       | 26.1        | 60.2        | 10.2       |       |        |
|                | 3          | \$                | 1.8       | 2.33        | 6.1       | 16.2         | 76       | 27.2        | 61.5        | 10.3       |       |        |
|                | 4          | L I               | 2.0       | 2.29        | 6.1       | 16.1         | 78       | 27.0        | 65.1        | 10.3       |       |        |
|                | 5          | ;                 | 1.9       | 2.30        | 6.0       | 16.1         | 77       | 26.8        | 60.3        | 10.3       |       |        |
|                | 6          | ;                 | 1.9       | 2.31        | 6.1       | 16.1         | 78       | 26.8        | 60.5        | 11.0       |       |        |
|                | 7          | '                 | 2.0       | 2.31        | 6.0       | 16.3         | 77       | 27.3        | 62.5        | 11.2       |       |        |
|                | 8          | \$                | 1.8       | 2.32        | 5.9       | 16.2         | 73       | 29.0        | 62.0        | 10.9       |       |        |
|                | 9          |                   | 1.9       | 2.31        | 6.0       | 16.2         | 74       | 28.9        | 62.8        | 11.1       |       |        |
|                | 1          | 0                 | 2.0       | 2.30        | 6.1       | 16.1         | 75       | 27.6        | 60.7        | 11.0       |       |        |
| N :            | 10         |                   | 10        |             | 10        | 10           | )        | 10          |             | 10         | 10    | 10     |
| Mean :         | 1.92       |                   | 2.31      | e           | 6.04      | 16.1         | 17       | 75.80       | 2           | 27.36      | 61.47 | 10.69  |
| 1 SD :         | 0.08       |                   | 0.01      | C           | 0.07      | 0.0          | 7        | 1.69        |             | 0.93       | 1.71  | 0.39   |
| % CV :         | 4.11       |                   | 0.49      | 1           | .16       | 0.4          | 2        | 2.23        |             | 3.38       | 2.79  | 3.65   |
| arget Value :  | 1.90       |                   | 2.30      | e           | 6.00      | <b>16</b> .1 | 10       | 75.00       | 2           | 26.50      | 63.00 | 10.50  |
| % Recovery :   | 101.05     |                   | 100.35    | 10          | 0.67      | 100.         | .43      | 101.07      | / 1         | 03.25      | 97.57 | 101.81 |
| Clear Form     | Reset      |                   | Reset     | F           | leset     | Re           | set      | Reset       |             | Reset      | Reset | Reset  |
| Comments : ACC | EPTABLE    | PREC              | SISION,   | ACCURA      |           |              |          | 6 - OK FC   | RUSE        |            |       |        |
| nalyst : KL    |            |                   |           |             |           | 10/4/201     | 6        | Approv      | ved by :    | DL         |       | (      |

## QC Statistics Calculators (cont.)

| bTools CALCULATE QC MEAN(S), SD, CV%, QC RANGES       |                                                                                                                                                                                                                             |         |       |       |       |       |       |       |            |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------|-------|-------|-------|-------|------------|
| Replace with Name of Laboratory >                     |                                                                                                                                                                                                                             |         |       |       |       |       |       |       |            |
| DESCR<br>INSTRU<br>ANALY<br>METHO<br>CONTR<br>LOT # : | DESCRIPTION: Establish Patient Mean of Normals for Use in the INR Calculation<br>NSTRUMENT: ACL-1000<br>MALYTE: Prothrombin Time<br>METHOD: Coagulation Time (Seconds)<br>CONTROL: N/A<br>LOT #: Thromboplastin Lot# 123456 |         |       |       |       |       |       |       |            |
| ID                                                    | 1-20                                                                                                                                                                                                                        | ID      | 21-40 | ID    | 41-60 | ID    | 61-80 | D     | 81-100     |
| 9001                                                  | 10.8                                                                                                                                                                                                                        | 9021    | 12.8  | 9041  | 11.7  |       |       |       |            |
| 9002                                                  | 11.1                                                                                                                                                                                                                        | 9022    | 12.1  | 9042  | 10.1  |       |       |       |            |
| 9003                                                  | 11.7                                                                                                                                                                                                                        | 9023    | 12.0  | 9043  | 13.1  |       |       | -     | 1 1 1      |
| 9004                                                  | 11.5                                                                                                                                                                                                                        | 9024    | 12.0  | 9044  | 12.6  |       |       |       | 1.11       |
| 9005                                                  | 12.0                                                                                                                                                                                                                        | 9025    | 12.7  | 9045  | 11.0  |       |       |       |            |
| 9006                                                  | 13.1                                                                                                                                                                                                                        | 9026    | 13.4  | 9046  | 12.0  |       |       |       |            |
| 9007                                                  | 11.8                                                                                                                                                                                                                        | 9027    | 10.8  | 9047  | 10.0  |       |       |       |            |
| 9008                                                  | 10.8                                                                                                                                                                                                                        | 9028    | 11.8  | 9048  | 9.0   |       |       | 1     |            |
| 9009                                                  | 11.2                                                                                                                                                                                                                        | 9029    | 10.0  | 9049  | 11.1  |       |       |       |            |
| 9010                                                  | 13.5                                                                                                                                                                                                                        | 9030    | 9.7   | 9050  | 10.5  |       |       |       |            |
| 9011                                                  | 10.7                                                                                                                                                                                                                        | 9031    | 9.8   | 9051  | 10.3  |       |       | 1     |            |
| 9012                                                  | 9.5                                                                                                                                                                                                                         | 9032    | 10.5  | 9052  | 11.8  |       |       |       |            |
| 9013                                                  | 10.6                                                                                                                                                                                                                        | 9033    | 10.8  | 9053  | 11.9  |       |       | - L.  | _          |
| 9014                                                  | 10.9                                                                                                                                                                                                                        | 9034    | 12.2  | 9054  | 13.2  |       |       |       | _          |
| 9015                                                  | 11.3                                                                                                                                                                                                                        | 9035    | 13.3  | 9055  | 14.0  | -     |       | • 1   | -          |
| 9016                                                  | 11.8                                                                                                                                                                                                                        | 9036    | 12.4  | 9056  | 9.7   |       |       |       |            |
| 9017                                                  | 12.0                                                                                                                                                                                                                        | 9037    | 9.4   | 9057  | 10.4  |       |       |       |            |
| 9018                                                  | 12.1                                                                                                                                                                                                                        | 9038    | 13.2  |       |       |       |       |       |            |
| 9019                                                  | 13.2                                                                                                                                                                                                                        | 9039    | 13.0  |       |       |       |       |       |            |
| 9020                                                  | 10.8                                                                                                                                                                                                                        | 9040    | 12.8  |       |       |       |       |       | -          |
| NM                                                    | IEAN 1S                                                                                                                                                                                                                     | D CV%   | -1SD  | +1SD  | -2SD  | +2SD  | -3SD  | +3SD  | Geom. Mean |
| 57 1                                                  | 1.54 1.2                                                                                                                                                                                                                    | 2 10.56 | 10.32 | 12.75 | 9.10  | 13.97 | 7.88  | 15.19 | 11.47      |
| СОММ                                                  | COMMENTS: Patient Mean Study - Use Geometric Mean for INR Calculation                                                                                                                                                       |         |       |       |       |       |       |       |            |
| SLT_412 M                                             | T 412 Mean SD Calc 1001 Reset                                                                                                                                                                                               |         |       |       |       |       |       |       |            |
| 2001-2014                                             | 07-2014, SmartLabTools <sup>11</sup><br>iel W. Leighton, MT(ASCP), CLB 9/21/2015 Analyst                                                                                                                                    |         |       |       |       |       |       |       |            |

| Image: Provide the section of the s                                     | Smart<br>LabTools | MULTI-ANALYTE QC STATISTICS CALCULATOR                                                                |                                     |       |                        |            |            |              |              |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------|-------|------------------------|------------|------------|--------------|--------------|---|
| Ne       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <th< td=""><td>2</td><td></td><td colspan="8">&lt; Replace with Name of Laboratory &gt;</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                 |                                                                                                       | < Replace with Name of Laboratory > |       |                        |            |            |              |              |   |
| NEC       REC       HGB       HCT       NCV       PLAT         3.17       2.26       5.6       17.3       75.5       57         2.94       2.28       5.6       17.3       75.9       60         3.01       2.28       5.6       17.3       75.9       60         3.01       2.28       5.7       17.1       75.7       67         3.00       2.27       5.7       17.3       76.2       60         2.91       2.24       5.7       17.4       75.3       62         3.09       2.28       5.7       17.4       76.3       62         3.09       2.28       5.7       17.4       76.3       62         3.00       2.28       5.7       17.1       76.3       62         3.02       2.28       5.7       17.1       76.3       62         3.02       2.28       5.7       17.1       76.3       62         3.02       2.28       5.7       17.1       76.3       62         3.02       2.28       5.7       17.1       76.3       62         0.80       0.02       0.05       0.14       0.38       5.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | Description: INSTRUMENT XT-1800i PRECISION STUDIES<br>CONTROL SYSMEX L-1, LOT 10050810 CLOSED MODE    |                                     |       |                        |            |            |              |              |   |
| N =       10       10       10       10       10         100       1228       6.6       17.3       75.5       67       10         3.01       2.28       6.6       17.3       75.9       60       10       10         3.01       2.28       6.6       17.3       75.9       62       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td></td> <td>WBC</td> <td>RBC</td> <td>HGB</td> <td>НСТ</td> <td>MCV</td> <td>PLAT</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | WBC                                                                                                   | RBC                                 | HGB   | НСТ                    | MCV        | PLAT       |              |              |   |
| N =       10       10       17.3       75.5       57         3.00       2.28       5.6       17.3       75.9       60         3.01       2.28       5.6       17.3       75.9       62         3.00       2.27       5.7       17.1       76.7       61         3.00       2.28       5.7       17.4       76.3       62         3.01       2.28       5.7       17.4       76.3       62         3.02       2.28       5.7       17.4       76.3       62         3.03       2.24       5.6       17.4       76.3       62         3.03       2.24       5.6       17.4       76.3       52         3.02       2.28       5.7       17.1       76.3       59         3.02       2.28       5.7       17.1       76.3       59         MEAN =       3.01       2.27       5.55       17.23       75.97       59.20       10         1SD =       0.08       0.02       0.05       0.14       0.29       3.16       10         2.29 =       3.17       0.30       5.56       17.51       75.55       65.51       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | 3.17                                                                                                  | 2.26                                | 5.6   | 17.1                   | 75.7       | 62         |              |              |   |
| N =       10       10       17.3       75.9       60       17.3       75.9       62       17.3       75.9       62       17.3       75.9       62       17.3       75.9       61       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | 3.02                                                                                                  | 2.29                                | 5.6   | 17.3                   | 75.5       | 57         |              |              |   |
| N =       10       10       17.4       75.7       67         3.00       2.27       5.7       17.3       76.2       60         3.01       2.28       5.7       17.4       76.3       62         3.09       2.28       5.7       17.4       76.3       62         3.03       2.24       5.6       17.4       76.3       62         3.02       2.28       5.7       17.1       76.3       62         3.02       2.28       5.7       17.1       76.3       62         3.02       2.28       5.7       17.1       76.3       62         M =       10       10       10       10       10         MEAN =       3.01       2.27       5.55       17.23       75.97       59.20         1SD =       0.08       0.02       0.05       0.14       0.29       3.16       5.33         YSD =       2.317       2.30       5.54       16.95       78.39       52.89       53.3         YSD =       3.57       2.30       5.76       17.51       76.55       65.51       17.53         YSD =       3.57       2.30       5.76       17.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 2.94                                                                                                  | 2.28                                | 5.6   | 17.3                   | 75.9       | 60         |              |              |   |
| N =       10       10       17.1       76.7       67         3.00       2.27       5.7       17.3       76.2       60         3.09       2.28       5.7       17.4       76.3       62         3.00       2.28       5.7       17.1       76.3       62         3.00       2.28       5.7       17.1       76.3       62         3.00       2.28       5.7       17.1       76.3       62         3.00       2.28       5.7       17.1       76.3       62         3.00       2.28       5.7       17.1       76.3       62         3.01       2.27       5.65       17.23       75.97       59.20         1SD =       0.08       0.02       0.05       0.14       0.29       3.16         1SD =       0.08       0.02       0.05       0.14       0.29       3.16       5.33         +2SD =       3.17       2.30       5.76       17.51       76.55       65.51       65.51         Reset       Reset       Reset       Reset       Reset       Reset       Reset       Reset         L2201       2.31       5.76       17.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 3.01                                                                                                  | 2.28                                | 5.6   | 17.3                   | 75.9       | 62         |              |              |   |
| N =       10       10       17.1       76.2       60         3.09       2.28       5.7       17.4       76.3       62         3.00       2.24       5.6       17.4       76.3       62         3.00       2.28       5.7       17.1       76.3       62         3.02       2.28       5.7       17.1       76.3       62         3.02       2.28       5.7       17.1       76.3       59         MEAN       3.01       2.27       5.65       17.4       76.9       59         MEAN       3.01       2.27       5.65       0.7       17.1       76.97       59.20         SUB       0.38       0.32       0.38       5.33       10       10         SUB       0.38       0.38       5.33       10       10       10       10         VW       2.28       3.5.4       16.95       75.39       55.51       10       10         VW       Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 2.90                                                                                                  | 2.26                                | 5.7   | 17.1                   | 75.7       | 57         |              |              |   |
| N =       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <t< td=""><td></td><td>3.00</td><td>2.27</td><td>5.7</td><td>17.3</td><td>76.2</td><td>60</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | 3.00                                                                                                  | 2.27                                | 5.7   | 17.3                   | 76.2       | 60         |              |              |   |
| N =       10       10       17.4       76.3       62         3.02       2.28       5.7       17.1       76.3       62         3.02       2.28       5.7       17.1       76.3       59         N =       10       10       10       10       10       10         MEAN =       3.01       2.27       5.65       17.23       75.97       59.20       10         1SD =       0.08       0.02       0.05       0.14       0.29       3.16       10       10         2SD =       2.85       2.23       5.54       16.95       75.39       52.89       10       10         V% = 2.71       0.77       0.93       0.82       0.38       5.33       10       10         2.5D =       2.85       2.23       5.54       16.95       75.39       52.89       10       10         2.5D =       3.17       2.30       5.76       17.51       76.55       85.51       10       10         .2SD =       3.17       2.30       5.76       17.51       76.55       85.51       10       10         .2D =       3.17       2.30       5.76       17.51       76.55<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | 2.91                                                                                                  | 2.24                                | 5.7   | 17.0                   | 75.9       | 61         |              |              |   |
| N =       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <t< td=""><td></td><td>3.09</td><td>2.28</td><td>5.7</td><td>17.4</td><td>76.3</td><td>52</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | 3.09                                                                                                  | 2.28                                | 5.7   | 17.4                   | 76.3       | 52         |              |              |   |
| N =       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <t< td=""><td></td><td>3.03</td><td>2.24</td><td>5.6</td><td>17.4</td><td>76.3</td><td>62</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | 3.03                                                                                                  | 2.24                                | 5.6   | 17.4                   | 76.3       | 62         |              |              |   |
| N =       10       10       10       10       10         N =       10       10       10       10       10       10         N =       0.01       2.27       5.65       17.23       75.97       59.20       10         1SD =       0.08       0.02       0.05       0.14       0.29       3.16       10         2SD =       2.35       2.23       5.54       16.95       75.39       52.89       10         V2SD =       3.17       2.30       5.76       17.51       76.55       65.51       10         Reset       Reset       Reset       Reset       Reset       Reset       Reset       Reset         Comments:       CV% ARE WITHIN MANUFACTURER'S ALLOWABLE LIMITS.<br>CONTROL VALUES ARE WITHIN INSERT LIMITS.       Anlyst: MaryAnn         201201       Anlyst:       MaryAnn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | 3.02                                                                                                  | 2.28                                | 5.7   | 17.1                   | 76.3       | 59         |              |              |   |
| N =       10       10       10       10       10         N =       10       10       10       10       10       10         N =       0.01       2.27       5.65       17.23       75.97       59.20       10         1 SD =       0.08       0.02       0.05       0.14       0.29       3.16       10         2 SD =       2.35       2.23       5.54       16.95       75.39       52.89       10         2 SD =       3.17       2.30       5.76       17.51       76.55       65.51       10         Reset       Reset       Reset       Reset       Reset       Reset       Reset       Reset         Comments:       CV% ARE WITHIN MANUFACTURER'S ALLOWABLE LIMITS.<br>CONTROL VALUES ARE WITHIN INSERT LIMITS.       Analyst: MaryAna         2012015       Analyst: MaryAna       2021015       Analyst: MaryAna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                       |                                     |       |                        |            |            |              |              |   |
| N =       10       10       10       10       10         MEAN =       3.01       2.27       5.65       17.23       75.97       59.20       10         13D =       0.08       0.02       0.05       0.14       0.29       3.16       10       10         2SD =       2.85       2.23       5.54       16.95       75.39       52.89       10       10         V2SD =       3.17       2.30       5.76       17.51       76.55       65.51       10       10         Reset       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                       |                                     |       |                        |            |            |              |              |   |
| N =       10       10       10       10       10         MEAN =       3.01       2.27       5.65       17.23       75.97       59.20         18D =       0.08       0.02       0.05       0.14       0.29       3.16         CV% =       2.71       0.77       0.93       0.82       0.38       5.33       10         -2SD =       2.85       2.23       5.54       16.95       76.39       52.89       10         N =       Nest       Reset       Reset       Reset       Reset       Reset       Reset         Comments:       CV% ARE WITHIN MANUFACTURER'S ALLOWABLE LIMITS.       Control VALUES ARE WITHIN INSERT LIMITS.       Analyst: MaryAnn         201/001       Analyst: MaryAnn       202/2015       MaryAnn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                       |                                     |       |                        |            |            |              |              |   |
| N =       10       10       10       10       10         MEAN =       3.01       2.27       5.65       17.23       75.97       59.20         1SD =       0.08       0.02       0.05       0.14       0.29       3.16         CV% =       2.71       0.77       0.93       0.82       0.38       5.33       1         -2SD =       2.85       2.23       5.54       16.95       75.39       52.89       1       1         Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                       |                                     |       |                        |            |            |              |              |   |
| N =       10       10       10       10       10         MEAN =       3.01       2.27       5.65       17.23       75.97       59.20         1SD =       0.08       0.02       0.05       0.14       0.29       3.16         CV% =       2.71       0.77       0.93       0.82       0.38       5.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                       |                                     |       |                        |            |            |              |              |   |
| N =       10       10       10       10       10         MEAN =       3.01       2.27       5.65       17.23       75.97       59.20         1SD =       0.08       0.02       0.05       0.14       0.29       3.16         CV% =       2.71       0.77       0.93       0.82       0.38       5.33       10         -2SD =       2.85       2.23       5.54       17.51       76.55       65.51       10         Reset       Reset       Reset       Reset       Reset       Reset       Reset       Reset         Comments:       CV% ARE WITHIN MANUFACTURER'S ALLOWABLE LIMITS.<br>CONTROL VALUES ARE WITHIN INSERT LIMITS.       Analyst: MaryAnn         Y21/2015       Analyst: MaryAnn       221/2015       Analyst: MaryAnn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                                                                       |                                     |       |                        |            |            |              |              |   |
| N =       10       10       10       10       10         MEAN =       3.01       2.27       5.65       17.23       75.97       59.20         1 SD =       0.08       0.02       0.05       0.14       0.29       3.16         CV% =       2.71       0.77       0.93       0.82       0.38       5.33       1         -2SD =       2.85       2.30       5.54       16.95       75.39       52.89       1       1         +2SD =       3.17       2.30       5.76       17.51       76.55       65.51       1       1         Reset       Reset       Reset       Reset       Reset       Reset       Reset       Reset         Comments:       CV% ARE WITHIN MANUFACTURER'S ALLOWABLE LIMITS.<br>CONTROL VALUES ARE WITHIN INSERT LIMITS.       2/2/2/2015       Analyst: MaryAnn         9/21/2015       Analyst:       MaryAnn       2/2/2/2015       Smatt Jelsohon***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                       |                                     |       |                        |            |            |              |              |   |
| N =       10       10       10       10       10       10         MEAN =       3.01       2.27       5.65       17.23       75.97       59.20       10         1SD =       0.08       0.02       0.05       0.14       0.29       3.16       10         2SD =       2.85       2.23       5.54       16.95       75.39       52.89       10         2SD =       3.17       2.30       5.76       17.51       76.55       65.51       10         Reset       Reset       Reset       Reset       Reset       Reset       Reset         Comments:       CV% ARE WITHIN MANUFACTURER'S ALLOWABLE LIMITS.<br>CONTROL VALUES ARE WITHIN INSERT LIMITS.       Analyst: MaryAnn         9/21/2015       Analyst: MaryAnn       9/21/2015       Daniel W. Leighton. MT(ASCP). CL8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                       |                                     |       |                        |            |            |              |              |   |
| N =       10       10       10       10       10       10         MEAN =       3.01       2.27       5.65       17.23       75.97       59.20       10         1SD =       0.08       0.02       0.05       0.14       0.29       3.16       10         CV% =       2.71       0.77       0.93       0.82       0.38       5.33       10         -2SD =       2.85       2.23       5.54       16.95       75.39       52.89       10         +2SD =       3.17       2.30       5.76       17.51       76.55       65.51       10         Reset       Reset       Reset       Reset       Reset       Reset       Reset         Comments:       CV% ARE WITHIN MANUFACTURER'S ALLOWABLE LIMITS.<br>CONTROL VALUES ARE WITHIN INSERT LIMITS.       Analyst: MaryAnn         9/21/2015       Analyst:       MaryAnn         9/21/2015       Daniel W.Leighton. MT(ASCP). CLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                       |                                     |       |                        |            |            |              |              |   |
| N =       10       10       10       10       10       10         MEAN =       3.01       2.27       5.65       17.23       75.97       59.20         1SD =       0.08       0.02       0.05       0.14       0.29       3.16         CV% =       2.71       0.77       0.93       0.82       0.38       5.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                                                                                                       |                                     |       |                        |            |            |              |              |   |
| MEAN =       3.01       2.27       5.65       17.23       75.97       59.20         1SD =       0.08       0.02       0.05       0.14       0.29       3.16         CV% =       2.71       0.77       0.93       0.82       0.38       5.33         -2SD =       2.85       2.23       5.54       16.95       75.39       52.89         +2SD =       3.17       2.30       5.76       17.51       76.55       65.51         Reset       Reset       Reset       Reset       Reset       Reset         Comments:       CV% ARE WITHIN MANUFACTURER'S ALLOWABLE LIMITS.<br>CONTROL VALUES ARE WITHIN INSERT LIMITS.       Analyst: MaryAnn         9/21/2015       Analyst: MaryAnn       9/21/2015       Daniel W. Leighton. MT(ASCP). CLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N =               | 10                                                                                                    | 10                                  | 10    | 10                     | 10         | 10         |              |              |   |
| 1SD =       0.08       0.02       0.05       0.14       0.29       3.16         CV% =       2.71       0.77       0.93       0.82       0.38       5.33         -2SD =       2.85       2.23       5.54       16.95       76.39       52.89         +2SD =       3.17       2.30       5.76       17.51       76.55       65.51         Reset       Reset       Reset       Reset       Reset       Reset         Comments:       CV% ARE WITHIN MANUFACTURER'S ALLOWABLE LIMITS.<br>CONTROL VALUES ARE WITHIN INSERT LIMITS.       Analyst: MaryAnn         9/21/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MEAN =            | 3.01                                                                                                  | 2.27                                | 5.65  | 17.23                  | 75.97      | 59.20      |              |              |   |
| CV% =       2.71       0.77       0.93       0.82       0.38       5.33         -2SD =       2.85       2.23       5.54       16.95       76.39       52.89         +2SD =       3.17       2.30       5.76       17.51       76.55       65.51         Reset       Reset       Reset       Reset       Reset       Reset         Comments:       CV% ARE WITHIN MANUFACTURER'S ALLOWABLE LIMITS.<br>CONTROL VALUES ARE WITHIN INSERT LIMITS.       Analyst: MaryAnn         9/21/2015       Analyst: MaryAnn       9/21/2015 <sup>martLabTools<sup>mart</sup>       Daniel W. Leighton. MT(ASCP). CLB   </sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1SD =             | 0.08                                                                                                  | 0.02                                | 0.05  | 0.14                   | 0.29       | 3.16       |              |              |   |
| -2SD = 2.85<br>+2SD = 3.17<br>Reset Reset | CV% =             | 2.71                                                                                                  | 0.77                                | 0.93  | 0.82                   | 0.38       | 5.33       |              |              |   |
| +2SD = 3.17 2.30 5.76 17.51 76.55 65.51<br>Reset Reset      | -2SD =            | 2.85                                                                                                  | 2.23                                | 5.54  | 16.95                  | 75.39      | 52.89      |              |              |   |
| Reset       Reset       Reset       Reset       Reset       Reset         Comments:       CV% ARE WITHIN MANUFACTURER'S ALLOWABLE LIMITS.<br>CONTROL VALUES ARE WITHIN INSERT LIMITS.       Image: Control of the section o                                                                                                                           | +2SD =            | 3.17                                                                                                  | 2.30                                | 5.76  | 17.51                  | 76.55      | 65.51      |              |              |   |
| Comments: CV% ARE WITHIN MANUFACTURER'S ALLOWABLE LIMITS.<br>CONTROL VALUES ARE WITHIN INSERT LIMITS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | Reset                                                                                                 | Reset                               | Reset | Reset                  | Reset      | Reset      | Reset        | Reset        |   |
| Form: SLT 410 v.111613 ©2007-2015, SmartLabTools <sup>™</sup> Daniel W. Leighton. MT(ASCP). CLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | Comments: CV% ARE WITHIN MANUFACTURER'S ALLOWABLE LIMITS.<br>CONTROL VALUES ARE WITHIN INSERT LIMITS. |                                     |       |                        |            |            |              |              |   |
| Form: SLT 410 v.111613 ©2007-2015, SmartLabTools™ Daniel W. Leighton, MT(ASCP), CLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                                                                                                       |                                     |       | Reset All<br>9/21/2015 | Anal       | yst: MaryA | nn           |              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Form: SLT_410     | v.111613                                                                                              |                                     | ©2(   | 007-2015, Smart        | tLabTools™ | Daniel     | W. Leighton, | MT(ASCP), CL | в |

**SLT 410** 

# **QC** Statistics

FREE Calculator (SLT\_100) Click Anywhere on Image for Webpage Download Link

There are two formulas to calculate Standard Deviation. This form was programmed using the 'manual' calculation method, which necessitates clicking the check boxes so calculations 'catch-up'.

Newer forms use the 'computer' formula for immediate SD Calculation, and don't require the check boxes.

Check out the many QC Calculators on the SLT website.

Calculate Mean, SD, CV%, Reference Range TYPE YOUR LAB NAME HERE Document Test System Information Method / Instrument Test Description Units AU400 CHEMISTRY GLUCOSE MG/DL Other Reagent / Q.C. Product Information EVALUATING NEW LOT OF QC ... Enter Data 88.00 90.00 88.00 86.00 93.00 92.00 87.00 87.00 89.00 94.00 86.00 87.00 86.00 90.00 95.00 84.00 91.00 84.00 86.00 96.00 89.00 88.00 89.00 91.00 97.00 CLICK ALL 3 BOXES =>>> Calculated Statistics N = 25 1 SD Range = 89.32 to Arithmetic 2 SD Range = to 89.32 Mean = 1 SD = 3 SD Range = to

Reset

SmartLabTools.com

Analyst:

CV% =

SLT 100 Mean SD Calc 30dp

©2007-2013 Smartl abTools

Daniel W. Leighton, MT(ASCP), CLB

Email: Dan@smartlabtools.com

# Calculate QC Limits..

| Smart HabTools   | CALCULATE QC LIMITS USING HISTORICAL CV% (HCV) |                                     |      |        |            |                |        |        |        |                |          |        |        |        |        |
|------------------|------------------------------------------------|-------------------------------------|------|--------|------------|----------------|--------|--------|--------|----------------|----------|--------|--------|--------|--------|
| CLEAR FORM       |                                                | < REPLACE WITH NAME OF LABORATORY > |      |        |            |                |        |        |        |                |          |        |        |        |        |
| METHOD :         | OLYMP                                          | US AU4                              | 00E  |        |            | OLYMPUS AU400E |        |        |        | OLYMPUS AU400E |          |        |        |        |        |
| CONTROLS :       | BIORAD L-1                                     |                                     |      |        |            | BIORAL         | ) L-2  |        |        |                | BIORA    | D L-3  |        |        |        |
| LOT #'s :        | 123451.                                        |                                     |      |        |            | 123452         |        |        |        |                | 123453   |        |        |        |        |
| EXPIRATION :     | 08/31/17                                       | 7                                   |      |        |            | 08/31/1        | 7      |        |        |                | 08/31/1  | 7      |        |        |        |
| ANALYTE          | MEAN                                           | нсу                                 | SD   | -2SD   | +2SD       | MEAN           |        | SD     | -2SD   | +2SD           | MEAN     | нсу    | SD     | -2SD   | +2SD   |
| SODIUM           | 114.5                                          | 1.0                                 | 1.15 | 112.21 | 116.79     | 141.5          | 1.0    | 1.42   | 138.67 | 144.33         | 156.5    | 2.0    | 3.13   | 150.24 | 162.76 |
| POTASSIUM        | 2.6                                            | 4.0                                 | 0.10 | 2.39   | 2.81       | 3.9            | 2.7    | 0.11   | 3.69   | 4.11           | 7.36     | 1.3    | 0.10   | 7.17   | 7.55   |
| CHLORIDE         | 76.5                                           | 1.5                                 | 1.15 | 74.21  | 78.80      | 101            | 1.9    | 1.92   | 97.16  | 104.84         | 117      | 2.3    | 2.69   | 111.62 | 122.38 |
| CO2              | 15.2                                           | 7.0                                 | 1.06 | 13.07  | 17.33      | 20.4           | 6.8    | 1.39   | 17.63  | 23.17          | 27       | 6.1    | 1.65   | 23.71  | 30.29  |
| GLUCOSE          | 63                                             | 3.1                                 | 1.95 | 59.09  | 66.91      | 123            | 3.0    | 3.69   | 115.62 | 130.38         | 363      | 3.1    | 11.25  | 340.49 | 385.51 |
| CREATININE       | 0.63                                           | 8.9                                 | 0.06 | 0.52   | 0.74       | 1.83           | 5.9    | 0.11   | 1.61   | 2.05           | 6.88     | 6.9    | 0.47   | 5.93   | 7.83   |
| T. PROTEIN       | 4.0                                            | 3.5                                 | 0.14 | 3.72   | 4.28       | 5.3            | 3.1    | 0.16   | 4.97   | 5.63           | 6.9      | 4.1    | 0.28   | 6.33   | 7.47   |
| ALBUMIN          | 2.5                                            | 4.0                                 | 0.10 | 2.30   | 2.70       | 3.3            | 3.0    | 0.10   | 3.10   | 3.50           | 4.3      | 3.4    | 0.15   | 4.01   | 4.59   |
| CALCIUM          | 5.8                                            | 4.4                                 | 0.26 | 5.29   | 6.31       | 9.8            | 4.3    | 0.42   | 8.96   | 10.64          | 13.2     | 3.6    | 0.48   | 12.25  | 14.15  |
| ALT              | 22                                             | 8                                   | 1.76 | 18.48  | 25.52      | 76.5           | 6.3    | 4.82   | 66.86  | 86.14          | 165      | 7.2    | 11.88  | 141.24 | 188.76 |
| AST              | 40                                             | 5.7                                 | 2.28 | 35.44  | 44.56      | 94             | 5.4    | 5.08   | 83.85  | 104.15         | 226      | 7.8    | 17.63  | 190.74 | 261.26 |
| ALP              | 29                                             | 12                                  | 3.48 | 22.04  | 35.96      | 139            | 7.6    | 10.56  | 117.87 | 160.13         | 289      | 8.6    | 24.85  | 239.29 | 338.71 |
| T. BILI          | 0.74                                           | 2.3                                 | 0.02 | 0.71   | 0.77       | 3.1            | 2.8    | 0.09   | 2.93   | 3.27           | 7.1      | 2.4    | 0.17   | 6.76   | 7.44   |
| GGT              | 24                                             | 5.6                                 | 1.34 | 21.31  | 26.69      | 65             | 7.4    | 4.81   | 55.38  | 74.62          | 111      | 8.3    | 9.21   | 92.57  | 129.43 |
| BUN              | 14.7                                           | 4.3                                 | 0.63 | 13.44  | 15.96      | 40.5           | 3.2    | 1.30   | 37.91  | 43.09          | 73       | 3.2    | 2.34   | 68.33  | 77.67  |
| URIC ACID        | 3.5                                            | 3.0                                 | 0.11 | 3.29   | 3.71       | 5.8            | 4.3    | 0.25   | 5.30   | 6.30           | 9.8      | 5.1    | 0.50   | 8.80   | 10.80  |
| TOT. CHOL        | 109                                            | 5.1                                 | 5.56 | 97.88  | 120.12     | 174            | 3.5    | 6.09   | 161.82 | 186.18         | 263      | 3.8    | 9.99   | 243.01 | 282.99 |
| HDL CHOL         | 37                                             | 3.4                                 | 1.26 | 34.48  | 39.52      | 65             | 2.8    | 1.82   | 61.36  | 68.64          | 90       | 3.1    | 2.79   | 84.42  | 95.58  |
| TRIG             | 87                                             | 3.5                                 | 3.05 | 80.91  | 93.09      | 136            | 3.3    | 4.49   | 127.02 | 144.98         | 211      | 3.4    | 7.17   | 196.65 | 225.35 |
|                  |                                                |                                     |      |        |            |                |        |        |        |                |          |        |        |        |        |
|                  |                                                |                                     |      |        |            |                |        |        |        |                |          |        |        |        |        |
|                  |                                                |                                     |      |        |            |                |        |        |        |                |          |        |        |        |        |
|                  |                                                |                                     |      |        |            |                |        |        |        |                |          |        |        |        |        |
|                  |                                                |                                     |      |        |            |                |        |        |        |                |          |        |        |        |        |
|                  |                                                |                                     |      |        |            |                |        |        |        |                |          |        |        |        |        |
|                  |                                                |                                     |      |        |            |                |        |        |        |                |          |        |        |        |        |
|                  |                                                |                                     |      |        |            |                |        |        |        |                |          |        |        |        |        |
|                  |                                                |                                     |      |        |            |                |        |        |        |                |          |        |        |        |        |
|                  |                                                |                                     |      |        |            |                |        |        |        |                |          |        |        |        |        |
|                  |                                                |                                     |      |        |            |                |        |        |        |                |          |        |        |        |        |
| SI T 447 - 44464 | 3                                              |                                     |      |        | <i>(</i> ) | 2007-2015      | Smarth | abTool | TM     | Danie          | LW Leigh | ton MT | (ASCP) | CLB    |        |

### Simple Q.C. Range Calculator

| ·                | D             | SCRIBE          | TEST SY         | STEM H     | ERE       | <u> </u>   | 1    |
|------------------|---------------|-----------------|-----------------|------------|-----------|------------|------|
| Enter Known      | Mean and SD   | to Calculate CV | %, 2SD, 3SD Lin | nits       | 1         |            |      |
| Control<br>Level | Mean          | 1SD             | - 2SD           | +250       | - 3SD     | +3SD       | CV%  |
| Level-1          | 100.00        | 2.50            | 95.00           | 105.00     | 92.50     | 107.50     | 2.50 |
| Level-2          | 200.00        | 3.50            | 193.00          | 207.00     | 189.50    | 210.50     | 1.75 |
| Level-3          | 300.00        | 5.00            | 290.00          | 310.00     | 285.00    | 315.00     | 1.67 |
| Enter Range t    | o Calculate M | ean and 1SD     | ( If Rang       | e is 2SD ) | ( If Rang | e is 3SD ) |      |
| Control<br>Level | Range<br>Low  | Range<br>High   | Mean            | 1SD        | Mean      | 1SD        | CV%  |
| Lough 1          | 95.00         | 105.00          | 100.00          | 2.50       | 100.00    | 1.67       | 2.50 |

200.00

3.50

5.00

200.00

300.00

2.33

3.33

1.75

1.67

| Level-2 | 193.00 | 207.00 | 200.00          | 3.  |
|---------|--------|--------|-----------------|-----|
| Level-3 | 290.00 | 310.00 | 300.00          | 5.0 |
|         | io i   | 2      | 58 <u>7</u> - 5 | 2   |

Level-2

Louis 2

| Control<br>Level | Mean   | CV%  | 1SD  | - 2SD Limit | +2SD Limit |
|------------------|--------|------|------|-------------|------------|
| Level-1          | 100.00 | 2.50 | 2.50 | 95.00       | 105.00     |
| Level-2          | 200.00 | 1.75 | 3.50 | 193.00      | 207.00     |
| Level-3          | 300.00 | 1.67 | 5.01 | 289.98      | 310.02     |

Reset

Comments: Use this Simple Calculator to quickly Convert QC Limits from Inserts or other sources for use in your QC Program. **Click Here for Free Download** 

SLT\_111.d Simple QC Range Calculator ©2007-2014, SmartLabTools™

Daniel W. Leighton, MT(ASCP), CLB Email: Dan@smartlabtools.com



## **Normal Distribution Simulation**



# Bias Increased by +1SD Simulation



# Bias Increased by +2SD Simulation



## Imprecision Increased x 2 Simulation



## **Bias & Imprecision Simulation**



### (Section-5) Cloud Storage and Sharing



The benefit of saving the electronic PDF files in a web folder is that they may be shared and viewed remotely.

The following illustrates use of Dropbox for QC Files

### Using Dropbox Folders (Web Application)

### In Dropbox Create

- db folder for each Lab
- Subfolders by subject
- Subfolders by analyzer
- Subfolders by year
- Subfolders by month Save QC Reports (files) include date in filename



QC Activity as viewed from consultants desktop

### Dropbox Folders with QC Reports (PDF's)

Filed by:

- Instrument
- Year
- Month
- Day







### Dropbox.. QC Activity Reports emailed

| ांगे IPM Lab Irvine_Folder                                   | ACR_Folder                                                                                  |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| IPM ABX-08-15-2016.pdf                                       | INTEGRA 400 DAILY QC 08-15-16.pdf                                                           |
| Added to <u>8. AUG 2016</u> by Kathy <u>Monday 8/15/2016</u> | Added to <u>8. AUG 2016</u> by Guillermo <u>Monday 8/15/2016</u>                            |
| PENTRA QC 08-12-16.pdf                                       | INTEGRA 400 DAILY QC 08-11-16.pdf                                                           |
| Added to <u>8. AUG 2016</u> by Kathy Friday 8/12/2016        | Added to <u>8. AUG 2016</u> by Guillermo Thursday 8/11/2016                                 |
| IPM_TOSOH QC 08-12-16.pdf                                    | SYSMEX DAILY QC 07-27-16.pdf                                                                |
| Added to <u>8. AUG 2016</u> by Kathy Friday 8/12/2016        | Added to <u>7 SYSMEX D016</u> by Guillermo Tuesday 8/9/2016                                 |
| IPM ABX-08-12-2016.pdf                                       | SYSMEX DAILY QC 07-26-16.pdf                                                                |
| Added to <u>8. AUG 2016</u> by Kathy Friday 8/12/2016        | Added to <u>7 SYSMEX D016</u> by Guillermo Tuesday 8/9/2016                                 |
| Added to <u>8. AUG 2016</u> by Kathy Thursday 8/11/2010      | SYSMEX DAILY QC 07-25-16.pdf<br>Added to <u>7 SYSMEX D016</u> by Guillermo Tuesday 8/9/2016 |
| 7 other events                                               | 5 other events                                                                              |

# FOLLOWING ARE SOME QC RELATED CITATIONS

### Be Prepared: One QC Out... can lead to 6 deficiencies

We were scheduled for a sinspection, and I wanted to wait it out before retiring. Surveyor came on turned out to be not the usual surveyor. She was not in a good mood; and proceeded to slam through our operations for the past 24 months with a laser... then any single deficiency got bundled with related up-line responsibilities. Sample in point - only one QC point recorded with Estradiol, on a particular day 2 years ago, got a QC citation; that triggered a Personnel Competency citation, and not following QC P&P, and Supervisory Lack of Training citation, and an Incompetent Tech Supv citation, finishing with a Director not Ensuring... citation. That was SIX citations from this ONE observation. Wow. So, SIX legit deficiencies exponentially became 36 citations. Frightful of a giant Shift in our history.

Examiners are highly experienced at finding QC deficiencies.. It's best the laboratory find and fix them first.

SmartLabTools<sup>™</sup> QC Statistical Assessment system can help provide that "additional measure" needed to ensure lab is examining each QC result prior to reporting patient results.

# **CMS - QC Citation Response Denied**

### D5469

The laboratory's allegation of compliance is not credible and evidence of correction is not acceptable.

#### Finding #1

Although the laboratory's submitted protocol indicates that the stated values of new commercially assayed CBC QC materials were to be verified through parallel testing against QC materials in use, the laboratory provided no documentation indicating that this protocol had been effectuated, no information as to how the results of the parallel testing will be documented, and no information as to whether laboratory staff has been trained on this new protocol.

Lesson here is that if you say your going to do something in your Policy & Procedure... Examiner's will hold you to it.

SLT\_410 & SLT 413 were created for parallel testing Hematology QC and Chemistry QC.

# CMS - QC Citation - Corrective Action

D5481

The laboratory's allegation of compliance is not credible and evidence of correction is not acceptable.

Finding #1

The submission references "Ex. I, Tabs 2-6." We located these tabs, but found no documentation in Tabs 2, 5 and 6.

Although the laboratory's submitted protocol requires that QC values be acceptable prior to reporting patient results, the submission states: " reviewed all quality control (QC) data for PT/INR [Prothombin Time/International Normalized Ratio] for the time period that this lot of Dade Innovin was in use." The laboratory provided no documentation of this review other than stating it was performed. We also found no documentation to indicate that the revised standard operating procedures (SOPS) have been effectuated. That is, we found no documentation of PT/INR QC failure investigations and corrective actions taken based on the revised SOPS.

Documenting QC failure investigations & corrective actions is an essential part of any laboratory Quality Control program. Forms for documenting QC Corrective Actions & Reviews are provided in the SLT\_QC System.

# QC Citation – Follow Lab's QC Policy

a. The General Quality Control Policy, under "Control Processing" stated "The technologist performing the assay must check that control results are within acceptable limits before reporting patient's results. If control results are acceptable, proceed to run and report patient samples. " Under " Corrective Action if Control Results are Not Acceptable (i.e. exceed +/- 2 SD are rejected by Westgard rules ...) " the policy stated, "Do not report patient results if QC is unacceptable."

b. Quality control results did not meet the laboratory's criteria for acceptability for Total Bilirubin on 9/10/15 when the Day to Day Chart (Levey Jennings Chart) showed that 1 of 2 results (Multiqual Level 3) exceeded 2 standard deviations from the mean. g. There were no corrective actions documented when quality control results failed to meet the criteria for acceptability, including assessment of patient test results in the unacceptable run and since the last acceptable test run to determine if patient test results had been adversely affected.

Statistically, 1 in 20 results may exceed 2SD limits for each control

The 1-2s Rule can be too restrictive, and should be used as a 'Warning' and not for 'Rejection'

Set 2-2s, and 1-3s for Rejection Rules with SLT QC

Daniel W. Leighton, Bioanalyst dan@smartlabtools.com

(77-11) (14) (14)

92