

Finding the equation of a circle

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Practice question

1

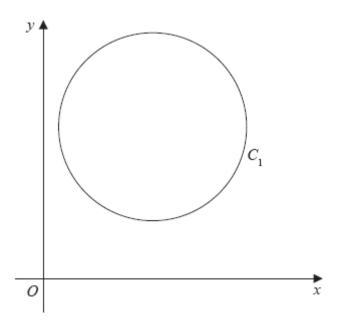


Figure 5

Figure 5 shows a sketch of the circle C_1

The points A(1, 4) and B(7, 8) lie on C_1

Given that AB is a diameter of the circle C_1

- (a) find the coordinates for the centre of C_1
- (b) find the exact radius of C_1 simplifying your answer.

Two distinct circles C_2 and C_3 each have centre (0, 0).

Given that each of these circles touch circle C_1

(c) find the equation of circle C_2 and the equation of circle C_3

The line joining the points (-1,4) and (3,6) is a diameter of the circle C.

Find an equation for C.

Answer

1
$$\mathbf{a} = \left(\frac{1+7}{2}, \frac{4+8}{2}\right) = (4, 6)$$

b
$$\frac{\sqrt{(7-1)^2 + (8-4)^2}}{2}$$
 Or $\sqrt{('4'-1)^2 + ('6'-4)^2}$ Or $\sqrt{(7-'4')^2 + (8-'6')^2}$
(Radius of circle) = $\sqrt{13}$

c Equation of C₂ is
$$x^2 + y^2 = r^2$$

Attempts either value of r as $\left(\sqrt{4'^2 + 6'^2} \pm \text{their } r\right)$
When $r = \sqrt{52} - \sqrt{13} = \sqrt{13} \implies x^2 + y^2 = 13$
When $r = \sqrt{52} + \sqrt{13} = 3\sqrt{13} \implies x^2 + y^2 = 117$

2
$$(x-1)^2 + (y-5)^2 = 5$$