

Dear Valued Partner,

At TRU STONE SPC, environmental responsibility has always been a core principal guiding how we design, manufacture and deliver our products. Located in Bursa — widely known as Turkey's green capital — our factory reflects our long-standing respect for the environment. With our newly achieved Environmental Product Declaration (EPD), we reaffirm this commitment once again through independently verified data.

We are pleased to announce that Trustone SPC has officially achieved the **Environmental Product Declaration (EPD)**. In accordance with EN 15804+A2 and ISO 14025 standards, this third-party verified document quantifies our environmental impact across the entire life cycle—from raw material sourcing and manufacturing in "Green Bursa" to transport and end-of-life recovery. For our clients, this provides a critical advantage: you can now confidently specify Trustone in high-tier projects requiring **LEED, BREEAM, or DGNB** certifications, using reliable, independently verified data to meet the world's strictest sustainability mandates.

Our commitment to high-standard, transparent manufacturing offers a level of accountability that sets us apart from other manufacturers. By providing cradle-to-gate data and verified environmental benefits beyond the product life cycle, we offer a degree of supply chain certainty that is often difficult to secure with Asian imports. Our factory-specific results in resource management and optimized energy consumption demonstrate a level of professional excellence that distinguishes us as a leader in SPC Floor & Wall production.

Beyond our environmental milestones, TRU STONE is defined by a comprehensive portfolio of quality and safety credentials. Our products have undergone rigorous testing to achieve **Intertek Clean Air Gold** and **Eurofins Indoor Air Comfort M1** certifications, ensuring the highest standards for indoor air quality. These sit alongside our extensive range of international certifications—including **TSA, EN, ASTM, and ISO 45001**—under which our products have achieved industry-leading results that validate the durability, technical performance, and structural integrity of our SPC flooring. This multi-layered verification ensures that when you choose TRU STONE, you are choosing a product that is as resilient as it is responsible.

We remain dedicated to delivering amazing, high-quality, and environmentally friendly products at competitive prices—offering the best overall value proposition through trust, validated by the most respected international bodies in the industry. We invite you to leverage these credentials to add value & prestige to your upcoming environmentally sensitive projects.

The full EPD certification document can be found below

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025

SPC Click 5mm 0,55 WL

Trusa Mermer Sanayi Tic Ltd San Tic Ltd Sti

EPD HUB, HUB-4868

Published on 16.01.2026, last updated on 16.01.2026, valid until 16.01.2031

Life Cycle Assessment study has been performed in accordance with the requirements of EN 15804, EPD Hub PCR version 1.2 (24 Mar 2025) and JRC characterization factors EF 3.1.

Created with One Click LCA

GENERAL INFORMATION

MANUFACTURER

Manufacturer	Trusa Mermer Sanayi Tic Ltd San Tic Ltd Sti
Address	Turanköy Mah Eser Sk No: 2/A Bursa, Türkiye
Contact details	bugrademirag@egecam.com
Website	www.FloorLaBs.co

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804:2012+A2:2019/AC:2021 and ISO 14025
PCR	EPD Hub Core PCR Version 1.2, 24 Mar 2025
Sector	Construction product
Category of EPD	Third party verified EPD
Parent EPD number	-
Scope of the EPD	Cradle to gate with options, A4, and modules C1-C4, D
EPD author	Mikko Manni
EPD verification	Independent verification of this EPD and data, according to ISO 14025: <input type="checkbox"/> Internal verification <input checked="" type="checkbox"/> External verification
EPD verifier	Imane Uald Lamkaddam as an authorized verifier for EPD Hub

This EPD is intended for business-to-business and/or business-to-consumer communication. The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products

may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	SPC Click 5mm 0,55 WL
Additional labels	-
Product reference	-
Place(s) of raw material origin	Türkiye, USA, China
Place of production	Bursa, Türkiye
Place(s) of installation and use	Europe
Period for data	01/01/2023-31/12/2023
Averaging in EPD	No grouping
Variation in GWP-fossil for A1-A3 (%)	-
GTIN (Global Trade Item Number)	-
NOBB (Norwegian Building Product Database)	-
A1-A3 Specific data (%)	27,8

PRODUCT CLASSIFICATION

Declared Unit, representative product	SPC Click 5mm 0,55 WL
Product thickness, mm	5,0 mm
Width, mm	228,6 mm
Length	1219,2 mm
Underlayment	IXPE
Product Weight, kg/m ²	8,32

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 m2 of floor
Declared unit mass	8,32 kg
GWP-fossil, A1-A3 (kgCO ₂ e)	10,5
GWP-total, A1-A3 (kgCO ₂ e)	10
Secondary material, inputs (%)	21
Secondary material, outputs (%)	66,4
Total energy use, A1-A3 (kWh)	37,5
Net freshwater use, A1-A3 (m ³)	0,1

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

FloorLaBs is one of the leading players in the Flooring and Wood Products Business, located in Izmir, Türkiye. We have authorized dealers on over 5 continents and export to more than 45 countries and continue to increase our exports to different countries. The brand was created to provide high-quality products with a global brand programme.

PRODUCT DESCRIPTION

SPC flooring is produced by FloorLaBs at the Trustone SPC production facility located in Bursa, Türkiye. The product is manufactured from a blend of approximately 70% natural stone and 30% polymer-based materials, including virgin PVC, recycled SPC, minerals, and stabilizers. The SPC core has a nominal density of approximately 2000 kg/m³ and provides structural rigidity and dimensional stability.

The rigid-core SPC flooring is designed for indoor floor applications and is classified as water-resistant. The product meets fire reaction class Bfl-s1 and is suitable for residential spaces and areas exposed to intermittent moisture, such as bathrooms, laundry rooms, and basements. It is also intended for light to medium commercial applications, including offices, clinics, daycare facilities, multi-family buildings, hotels, restaurants, and retail spaces.

The flooring system consists of multiple functional layers, including a wear layer, decorative layer, rigid SPC core, and an integrated IXPE underlay. Decorative layers are produced using high-definition printing technologies with embossed surface textures. Installation is carried out using mechanical click systems, such as Unilin Uniclic or equivalent drop-lock systems, enabling floating installation.

A factory-attached IXPE underlay is included, contributing to impact sound reduction and installation performance.

All SPC flooring produced by FloorLaBs at the Trustone facility is tested by independent laboratories, including Intertek, TÜV Rheinland, Eurofins, and Eurolabs, to verify compliance with applicable safety, health, and performance standards.

FloorLaBs manufactures SPC flooring alongside other flooring products, including laminate flooring, pre-finished parquet, decking and cladding systems, cork underlays, skirting profiles, and related flooring components.

Further information can be found at:

www.FloorLaBs.co

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass %	Material origin
Metals	-	-
Minerals	69	Türkiye
Fossil materials	31	USA, China
Bio-based materials	-	-

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0,147

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 m ² of floor
Mass per declared unit	8,32 kg
Functional unit	-
Reference service life	-

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Product stage		Assembly stage		Use stage							End of life stage				Beyond the system boundaries			
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D		
x	x	x	x	ND	ND	ND	ND	ND	ND	ND	ND	x	x	x	x	x		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling

Modules not declared = ND. Modules not relevant = MNR

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

A market-based approach is used in modelling the electricity mix utilized in the factory.

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production, as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

Raw material supply (A1) includes the production of all primary materials used in the SPC flooring system. These comprise calcium carbonate filler, PVC resin, polyethylene and PVC film layers, IXPE underlay foam, stabilizers, waxes, lubricants, and minor additives. In addition, internally recycled SPC material is used as part of the product formulation. This recycled fraction is generated from in-house production scrap, which is collected, pulverized, and reintroduced into the extrusion process. The electricity consumption associated with the mechanical recycling operation is included in the manufacturing model (A3). Upstream impacts for each raw material include resource extraction, chemical synthesis, and intermediate processing. PVC resin, PVC film layers, the wear layer, and IXPE underlay foam are imported from international suppliers, while the largest portion of our raw materials such as calcium carbonate is sourced from a nearby mine in Bursa, Türkiye. The remaining additives, including packaging materials, are also procured domestically.

Transport of raw materials to the production facility (A2) is primarily by truck and container ship, depending on the supplier location. Average transport distances were determined based on supplier information and typical logistics routes.

Manufacturing (A3) takes place at the Trustone SPC production facility

located in Turanköy, Kestel (Bursa), Türkiye. Primary data on energy consumption, production volumes, and process efficiency were collected directly from the manufacturer. The production process consists of several sequential operations: material mixing, extrusion and pressing of the SPC core, lamination of the decorative PVC and transparent wear layers, surface coating with UV oil, and final cutting, profiling, and packaging.

Electricity consumption at the plant was modelled using the Turkish medium-voltage electricity grid. Although solar panels are installed on the factory roof and generate electricity used directly in production, this renewable share was not accounted for in the model, as no green energy certificates were available to verify the source.

Ancillary materials used during production include lubricating oil and paraffin wax, which serve as process aids during extrusion. Waste from these materials is treated according to appropriate hazardous and non-hazardous waste scenarios. Internally generated SPC scrap is mechanically recycled on-site and reintroduced into the production process, resulting in negligible material losses

The finished flooring planks are packed in corrugated cardboard boxes and stacked on wooden pallets for distribution. Packaging production and transport are included within the A3 module. No reusable packaging is employed.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

Transportation impacts occurred from final product delivery to the construction site (A4), covering fuel direct exhaust emissions, environmental

impacts of fuel production, as well as related infrastructure emissions.

Transportation distance is defined according to the PCR. Transport to the construction site (A4) covers the distribution of the finished SPC flooring from the manufacturing facility in Turanköy, Kestel (Bursa), Türkiye, to the customer locations and based on sales volume-based weighted averages. Two transport modes are included in the model, consisting of 1,063.62 km of sea freight by container ship for export deliveries and 696.95 km of road transport by lorry.

Installation into the building (A5) is assumed to be a dry installation process using a mechanical click-lock system. No adhesives, water, or significant energy consumption are required during installation. Therefore, ancillary materials and on-site energy use are considered negligible.

The end-of-life treatment of packaging materials used during installation is included in this module. The packaging waste is modeled according to the EU's average waste management scenario, which includes recycling, energy recovery, and landfill in proportions based on EU statistics

PRODUCT USE AND MAINTENANCE (B1-B7)

This EPD does not cover the use phase.

Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

At the end of its service life, the SPC flooring is assumed to be manually dismantled on-site without the use of additional energy or specialized tools, resulting in negligible impacts for dismantling. After removal, the waste is transported to licensed waste treatment facilities.

The default One Click LCA construction group end-of-life scenarios (Eurostat

2020) are applied to represent the typical treatment routes for the product's material composition. These scenarios include material recycling, energy recovery through incineration, and final disposal in a landfill for non-recyclable residues. Plastics and organic additives are mainly incinerated with partial energy recovery, while mineral components such as calcium carbonate are disposed of as inert waste.

Recovered thermal and electrical energy from the incineration of combustible fractions is credited beyond the system boundary in Module D. Packaging waste, including wooden pallets and cardboard, is assumed to be recycled or incinerated with energy recovery.

MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

The production of capital equipment, construction activities, and infrastructure, maintenance and operation of capital equipment, personnel-related activities, energy and water use related to company management and sales activities are excluded.

This LCA study includes the provision of all materials, transportation, energy and emission flows, and end of life processing of product. The use phase is not covered, assuming there are no use emissions or replacements. All industrial processes from raw material acquisition and pre-processing, production, product distribution and installation, and end-of-life management are included. For easier modelling and because of lack of accuracy in available modelling resources, some constituents under 1% of product mass are excluded. These include some ancillary materials which are used in the product manufacturing only in very small amounts and have a negligible impact on the emissions of the product.

The production of capital equipment, construction activities, and infrastructure, maintenance and operation of capital equipment, personnel-related activities, energy and water use related to company management and sales activities are excluded.

VALIDATION OF DATA

Data collection for production, transport, and packaging was conducted using time and site-specific information, as defined in the general information section on page 1 and 2. Upstream process calculations rely on generic data as defined in the Bibliography section. Manufacturer-provided specific and generic data were used for the product's manufacturing stage. The analysis was performed in One Click LCA EPD Generator, with the 'Cut-Off, EN 15804+A2' allocation method, and characterization factors according to EN 15804:2012+A2:2019/AC:2021 and JRC EF 3.1.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging material	No allocation
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume

PRODUCT & MANUFACTURING SITES GROUPING

Type of grouping	No grouping
Grouping method	Not applicable
Variation in GWP-fossil for A1-A3, %	-

This EPD is product and factory specific.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator for EPD Hub V3 and EPD System Verification v3.2.3. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.10.1/3.11 and One Click LCA databases as sources of environmental data. Allocation used in Ecoinvent 3.10.1/3.11 environmental data sources follow the methodology 'allocation, Cut-off, EN 15804+A2'.

ENVIRONMENTAL IMPACT DATA

The following results refer to one unit of the SPC Click 5mm 0,55 WL. The declared unit represents 1m² of SPC floor.

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, EF 3.1

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP – total ¹⁾	kg CO ₂ e	7,38E+00	3,10E-01	2,33E+00	1,00E+01	1,20E+00	5,51E-01	ND	0,00E+00	1,08E-01	3,56E+00	1,12E-01	-3,71E+00						
GWP – fossil	kg CO ₂ e	7,37E+00	3,10E-01	2,78E+00	1,05E+01	1,20E+00	8,76E-03	ND	0,00E+00	1,08E-01	3,57E+00	1,12E-01	-3,65E+00						
GWP – biogenic	kg CO ₂ e	1,32E-03	5,98E-05	-4,57E-01	-4,56E-01	2,37E-04	5,42E-01	ND	0,00E+00	2,32E-05	-5,23E-03	-5,89E-05	-5,56E-02						
GWP – LULUC	kg CO ₂ e	5,99E-03	1,64E-04	6,03E-03	1,22E-02	4,48E-04	8,64E-06	ND	0,00E+00	4,41E-05	6,11E-04	7,92E-06	-8,18E-03						
Ozone depletion pot.	kg CFC- ₁₁ e	1,44E-06	4,88E-09	1,11E-07	1,56E-06	2,34E-08	1,14E-10	ND	0,00E+00	1,83E-09	1,62E-08	3,20E-10	-1,01E-06						
Acidification potential	mol H ⁺ e	3,22E-02	4,31E-03	2,17E-02	5,82E-02	5,00E-03	4,14E-05	ND	0,00E+00	3,56E-04	3,15E-03	8,72E-05	-1,65E-02						
EP-freshwater ²⁾	kg Pe	1,92E-03	1,74E-05	9,84E-04	2,93E-03	7,76E-05	2,12E-06	ND	0,00E+00	7,89E-06	1,83E-04	1,26E-06	-1,36E-03						
EP-marine	kg Ne	6,04E-03	1,02E-03	3,38E-03	1,04E-02	1,22E-03	5,49E-05	ND	0,00E+00	1,18E-04	1,19E-03	6,17E-04	-2,71E-03						
EP-terrestrial	mol Ne	6,40E-02	1,13E-02	3,82E-02	1,14E-01	1,34E-02	1,51E-04	ND	0,00E+00	1,29E-03	9,63E-03	3,57E-04	-2,72E-02						
POCP ("smog") ³⁾	kg NMVOCe	2,95E-02	3,42E-03	9,98E-03	4,29E-02	5,85E-03	5,29E-05	ND	0,00E+00	5,38E-04	3,01E-03	1,50E-04	-1,38E-02						
ADP-minerals & metals ⁴⁾	kg Sbe	1,02E-04	6,68E-07	6,87E-06	1,10E-04	3,78E-06	4,16E-08	ND	0,00E+00	3,24E-07	4,63E-06	2,63E-08	-4,48E-05						
ADP-fossil resources	MJ	1,36E+02	4,13E+00	3,31E+01	1,74E+02	1,67E+01	1,00E-01	ND	0,00E+00	1,55E+00	6,60E+00	2,75E-01	-8,81E+01						
Water use ⁵⁾	m ³ e depr.	2,20E+00	1,74E-02	1,62E+00	3,84E+00	8,07E-02	2,73E-03	ND	0,00E+00	7,63E-03	3,96E+00	1,28E-03	-1,28E+00						

1) GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, EF 3.1

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Particulate matter	Incidence	3,33E-07	1,87E-08	4,47E-08	3,97E-07	8,45E-08	6,51E-10	ND	0,00E+00	9,84E-09	6,86E-08	1,96E-09	-1,10E-07						
Ionizing radiation ⁶⁾	kBq 11235e	4,37E-01	3,43E-03	2,66E-02	4,67E-01	2,06E-02	4,33E-04	ND	0,00E+00	1,61E-03	2,72E-02	2,64E-04	-1,27E+00						
Ecotoxicity (freshwater)	CTUe	1,63E+02	4,66E-01	2,69E+01	1,90E+02	2,16E+00	1,75E-01	ND	0,00E+00	2,12E-01	1,67E+02	4,23E-01	-1,55E+01						
Human toxicity, cancer	CTUh	7,29E-09	6,02E-11	6,59E-10	8,01E-09	2,06E-10	5,44E-12	ND	0,00E+00	1,81E-11	1,09E-09	5,86E-12	-4,56E-09						
Human tox. non- cancer	CTUh	8,16E-08	1,96E-09	1,49E-08	9,85E-08	1,01E-08	2,93E-10	ND	0,00E+00	9,90E-10	1,75E-08	1,10E-09	-3,84E-08						
SQP ⁷⁾	-	2,25E+01	2,08E+00	3,55E+01	6,01E+01	9,52E+00	8,48E-02	ND	0,00E+00	1,29E+00	4,29E+00	6,24E-01	-1,98E+01						

6) EN 15804+A2 disclaimer for Ionizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Renew. PER as energy ⁸⁾	MJ	6,79E+00	5,24E-02	9,38E+00	1,62E+01	2,82E-01	- 3,82E+00	ND	0,00E+00	2,35E-02	5,94E-01	4,12E-03	-1,04E+01						
Renew. PER as material	MJ	0,00E+00	0,00E+00	4,71E+00	4,71E+00	0,00E+00	- 4,71E+00	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,85E-01						
Total use of renew. PER	MJ	6,79E+00	5,24E-02	1,41E+01	2,09E+01	2,82E-01	- 8,52E+00	ND	0,00E+00	2,35E-02	5,94E-01	4,12E-03	-9,87E+00						
Non-re. PER as energy	MJ	8,20E+01	4,13E+00	3,27E+01	1,19E+02	1,67E+01	1,00E-01	ND	0,00E+00	1,55E+00	- 7,97E+01	- 3,58E+01	-1,14E+02						
Non-re. PER as material	MJ	0,00E+00	0,00E+00	2,03E-01	2,03E-01	0,00E+00	-2,03E-01	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,67E+01						
Total use of non-re. PER	MJ	8,20E+01	4,13E+00	3,29E+01	1,19E+02	1,67E+01	-1,03E-01	ND	0,00E+00	1,55E+00	- 7,97E+01	- 3,58E+01	-8,72E+01						
Secondary materials	kg	1,75E+00	2,05E-03	1,43E-01	1,89E+00	7,78E-03	1,10E-04	ND	0,00E+00	6,80E-04	6,28E-03	9,45E-05	1,30E+00						
Renew. secondary fuels	MJ	4,91E-03	1,52E-05	1,13E-01	1,18E-01	9,28E-05	7,87E-07	ND	0,00E+00	8,61E-06	5,30E-04	1,79E-06	-1,22E-04						
Non-ren. secondary fuels	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m ³	8,70E-02	4,72E-04	9,09E-03	9,65E-02	2,20E-03	-1,71E-04	ND	0,00E+00	2,20E-04	8,98E-02	-3,37E-03	-4,12E-02						

8) PER = Primary energy resources.

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Hazardous waste	kg	4,66E-01	6,51E-03	1,19E-01	5,91E-01	2,42E-02	1,11E-03	ND	0,00E+00	2,46E-03	9,33E-01	4,58E-04	-2,35E-01						
Non-hazardous waste	kg	6,89E+01	1,10E-01	4,94E+00	7,39E+01	4,99E-01	3,42E-01	ND	0,00E+00	4,78E-02	6,80E+00	4,60E+00	-8,60E+01						
Radioactive waste	kg	1,11E-04	8,45E-07	1,36E-05	1,25E-04	5,13E-06	1,10E-07	ND	0,00E+00	3,97E-07	6,94E-06	6,46E-08	-2,94E-04						

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,47E-01	ND	0,00E+00	0,00E+00	5,53E+00	0,00E+00	0,00E+00						
Materials for energy rec	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,40E-01	ND	0,00E+00	0,00E+00	1,28E+01	0,00E+00	0,00E+00						
Exported energy – Electricity	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,90E-02	ND	0,00E+00	0,00E+00	5,39E+00	0,00E+00	0,00E+00						
Exported energy – Heat	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,41E-01	ND	0,00E+00	0,00E+00	7,42E+00	0,00E+00	0,00E+00						

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO ₂ e	7,34E+00	3,08E-01	2,76E+00	1,04E+01	1,19E+00	2,47E-02	ND	0,00E+00	1,08E-01	3,57E+00	1,07E-01	-3,56E+00						
Ozone depletion Pot.	kg CFC- ₁₁ e	1,43E-06	3,88E-09	8,79E-08	1,52E-06	1,86E-08	9,23E-11	ND	0,00E+00	1,46E-09	1,53E-08	2,56E-10	-1,01E-06						
Acidification	kg SO ₂ e	2,66E-02	3,46E-03	1,84E-02	4,85E-02	4,00E-03	3,12E-05	ND	0,00E+00	2,71E-04	2,45E-03	6,47E-05	-1,39E-02						
Eutrophication	kg PO ₄ ³⁻ e	3,83E-02	4,02E-04	6,98E-03	4,56E-02	7,04E-04	2,82E-05	ND	0,00E+00	6,73E-05	5,26E-04	5,18E-05	-3,40E-03						
POCP ("smog")	kg C ₂ H ₄ e	3,10E-03	1,87E-04	6,94E-04	3,98E-03	3,03E-04	6,24E-06	ND	0,00E+00	2,49E-05	2,22E-04	2,13E-05	-1,08E-03						
ADP-elements	kg Sbe	9,08E-05	6,54E-07	6,87E-06	9,83E-05	3,70E-06	4,06E-08	ND	0,00E+00	3,16E-07	3,21E-06	2,55E-08	-3,59E-05						

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
ADP-fossil	MJ	1,35E+02	4,07E+00	3,28E+01	1,72E+02	1,64E+01	9,28E-02	ND	0,00E+00	1,52E+00	6,16E+00	2,71E-01	-6,85E+01						

ADDITIONAL INDICATOR – GWP-GHG

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP-GHG ⁹⁾	kg CO ₂ e	7,38E+00	3,10E-01	2,79E+00	1,05E+01	1,20E+00	8,77E-03	ND	0,00E+00	1,08E-01	3,57E+00	1,12E-01	-3,66E+00						

9) This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. In addition, the characterisation factors for the flows – CH₄ fossil, CH₄ biogenic and Dinitrogen monoxide – were updated. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterisation factor for biogenic CO₂ is set to zero.

SCENARIO DOCUMENTATION

DATA SOURCES

Manufacturing energy scenario documentation – A3

Scenario parameter	Value
Electricity data source and quality	Electricity, Türkiye, 2022, Türkiye, One Click LCA
Electricity CO2e / kWh	0.68 kgCO2e/kWh

Transport scenario documentation - A4

Scenario parameter	Value
Fuel and vehicle type. Eg, electric truck, diesel powered truck	Transport, freight, sea, container ship – World ; Transport, freight, lorry 16-32 metric ton, EURO6 - Europe,
Average transport distance, km (leg 1; leg 2)	1063,62; 696,95;
Capacity utilization (including empty return) %	50
Bulk density of transported products	-
Volume capacity utilization factor	1

Installation scenario documentation – A5

Scenario information	Value
Waste material Data source	Corrugated board box production, 0.134 kg; Eur-flat pallet production, 0.009507 unit
Ancillary materials for installation (specified by material) / kg or other units as appropriate	-
Water use / m ³	-
Other resource use / kg	-

End of Life scenario documentation - C1-C4

Scenario information	Value
Collection process – kg collected separately	8.2872
Collection process – kg collected with mixed construction waste	0
Recovery process – kg for re-use	0
Recovery process – kg for recycling	5.531
Recovery process – kg for energy recovery	1.535
Disposal (total) – kg for final deposition	1.2212
Scenario assumptions e.g. transportation	Average transport distance: 50 km by lorry (16–32 tonnes, EURO 6)

Material specific END of Life Scenario documentation

Scenario parameter	Value
Calcite, Natural Stone Powder, 4.578 kg	93.6% recycled, 6.4% landfilled
PVC, 3.618 kg	34% recycled, 41% incineration with energy recovery, 25% landfilled
PU foam, 0.0664kg	7.5% recycling, 65.5% incinerated with energy recovery, 27% landfilled
Peewax, 0.321 kg	100% landfilled

THIRD-PARTY VERIFICATION STATEMENT

EPD Hub declares that this EPD is verified in accordance with ISO 14025 by an independent, third-party verifier. The project report on the Life Cycle Assessment and the report(s) on features of environmental relevance are filed at EPD Hub. EPD Hub PCR and ECO Platform verification checklist are used.

EPD Hub is not able to identify any unjustified deviations from the PCR and EN 15802+A2 in the Environmental Product Declaration and its project report.

EPD Hub maintains its independence as a third-party body; it was not involved in the execution of the LCA or in the development of the declaration and has no conflicts of interest regarding this verification.

The company-specific data and upstream and downstream data have been examined as regards plausibility and consistency. The publisher is responsible for ensuring the factual integrity and legal compliance of this declaration.

The software used in creation of this LCA and EPD is verified by EPD Hub to conform to the procedural and methodological requirements outlined in ISO 14025:2010, ISO 14040/14044, EN 15804+A2, and EPD Hub Core Product Category Rules and General Program Instructions.

Verified tools

Tool verifier: Magaly Gonzalez Vazquez

Tool verification validity: 27 March 2025 - 26 March 2028

Imane Uald Lamkaddam as an authorized verifier for EPD Hub Limited
16.01.2026

ANNEX I: SCALING TABLE

This section applies the Rule(s) for extrapolation to a homogeneous environmental family defined in the EPD Hub GPI v1.3 and the EPD Hub Core PCR v1.2.

The scaling approach follows the methodological principles of EPD Hub GPI Annex I, which allows linear extrapolation for products of identical composition and manufacturing process that differ only by geometric dimensions or minor material variations.

Note: All extrapolation coefficients are expressed at the declared unit level (1 m² of product) and not at the functional unit.

Description of products included in this Annex

This annex covers the SPC Click Locking flooring product family produced at the Trustone SPC facility in Bursa, Türkiye. All products share the same SPC core formulation, IXPE underlay, and mechanical click-locking system. The only differences between variants are product thickness (5 mm or 7 mm), wear-layer thickness (0.30 mm or 0.55 mm), and panel format. All variants are manufactured using identical materials, process steps, and energy sources on the same production line.

The reference and representative product for this scaling table is the SPC Click 5mm 0,55 WL model. All extrapolations and comparisons presented in this Annex are based on the verified results of this product.

Product Name	Weight per m ² (kg)	A1-A3, EN 15804+A2		
		GWP- total	GWP - fossil	GWP - biogenic
5 mm × 181.1 × 1219.2 mm 0.55mm wear layer Locking SPC Planks	8.32	10.02	10.47	-0.46
5 mm × 181.1 × 1219.2 mm 0.30mm wear layer Locking SPC Planks	8.39	10.10	10.56	-0.46
5 mm × 228.6 × 1219.2 mm 0.55mm wear layer Locking SPC (Reference Product)	8.32	10.02	10.47	-0.46
5 mm × 228.6 × 1219.2 mm 0.30mm wear layer Locking SPC Planks	8.39	10.10	10.56	-0.46
5 mm × 305 × 915 mm 0.55mm wear layer Locking SPC Tile	8.32	10.02	10.47	-0.46
5 mm × 305 × 915 mm 0.30mm wear layer Locking SPC Tiles	8.39	10.10	10.56	-0.46
7 mm × 228.6 × 1219.2 mm 0.55mm wear layer Locking SPC Planks	11.39	13.72	14.33	-0.63
7 mm × 228.6 × 1219.2 mm 0.30mm wear layer Locking SPC Planks	11.46	13.80	14.42	-0.63
7 mm × 228.6 × 1493 mm 0.55mm wear layer Locking SPC Planks	11.39	13.72	14.33	-0.63