
Sequences:

A *sequence* is an ordered list of numbers. The numbers in the list are called the *terms* of the sequence.

Here we have a pattern of figures.

Each figure is made up of squares.

Moving from left to right, each figure has 3 more squares than the figure before it.

We can represent this pattern by a sequence of numbers: 1, 4, 7, 10 . . .

Each term (number) in the sequence is 3 greater than the number before it.

This is an example of what's called an arithmetic sequence.

In an **arithmetic sequence** you get from one term to the next by always adding the *same* number.

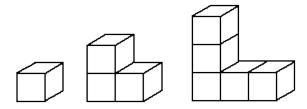
- 2, 5, 8, 11, 14 . . . is another arithmetic sequence that is formed by always adding 3, but we start with 2 this time, instead of 1.
 - 1. What is the next term in each of these arithmetic sequences:

A **geometric sequence** goes from one term to the next by always multiplying by the same number.

- 1, 2, 4, 8, 16 . . . is a geometric sequence. To get from one term to the next, you multiply by 2.
 - 2. What is the next term in each of these geometric sequences:

Sometimes, you won't know what kind of sequence you have. You will have to figure it out. Try the ones on the back \rightarrow

3. Find the next term in each of these sequences:


1, 3, 9, 27, _____

1, 5, 9, 13, _____

4, 4, 4, 4, _____

1, 10, 19, 28, _____

4. Draw the next figure that continues the pattern below:

The number of blocks in each figure of this continuing pattern can be represented by a sequence of numbers. Write the first 6 terms of the sequence:

What type of sequence is this?

What do you do to get from one term of the sequence to the next?

5. Sometimes, you get form one term in a sequence to the next term by subtracting or dividing instead of adding or multiplying. Fill-in the next two terms in each of these sequences:

103, 99, 95, 91, _____, ____

32, 16, 8, 4, _____, ____