Name:	ON
We are going to divide 24 by 6 using two different methods. The two methods are equivalent. They are just different ways of looking at the division problem $24 \div 6$.	
1. First, take 24 cubes and put them into groups of 6 cubes each.	
How many $groups$ do you have? 24 ÷ 6 =	
How many <u>cubes in each group</u> ?	
Write the total number of cubes as a multiplication expression that looks <i>like this</i> :	
(number of groups) x (number of cubes in a group) = total number of cube	es.
x =	
2. Now take another 24 cubes and put them into 6 groups so that each group has the same number of cubes.	ch
How many <i>groups</i> are there?	
How many <u>cubes in each group</u> ? 24 \div 6 =	
Write the total number of cubes as a multiplication expression that looks <i>like this</i> :	
(number of groups) x (number of cubes in a group) = total number of cube	S.
x =	
3. The 'total number of cubes' in each of your multiplication problems should be the same.	
The first time you divided up the cubes, you had groups, ea with cubes.	ch
The second time, you had groups, each with cubes.	
Which property of our number system tells you that these two expression must have the same value?	S

4. Take **20 cubes** and arrange them into as many **groups** as you can with <u>exactly</u> **6 cubes** in each group.

How many **groups** can you make? _____

How many cubes in each group? _____

How many **total cubes** did you use? ____ x ___ = ____

How many *left-over* cubes do you have? _____

5. Now take **20 cubes** and divide them <u>fairly</u> into **6 groups** so that each group has <u>exactly</u> the same number of cubes.

How many cubes in each group? _____

How many **groups** are there? _____

How many **total cubes** did you use? ____ x ___ = ____

How many *left-over* cubes do you have? _____

- 6. In each of the two problems above did you have the same number of cubes left-over? _____ In each, did you use the same total number of cubes to make your piles?
- 7. The two methods you used to divide up the 20 cubes are <u>equivalent</u>. Each is a way of dividing 20 by 6. The left-over cubes are called the **remainder**. **20** ÷ **6** = **3** with a remainder of **2**.

You can think of $20 \div 6$ in either of these ways (6 groups or groups of 6).

You can also think of $20 \div 6$ as finding the greatest whole number that you can multiply by 6 so that the product (answer) is as close as possible to—but not greater than—20.

That number is **3**. The **remainder** (left-over) is then the difference between 20 and (6×3) . **R** (remainder) = $20 - (6 \times 3) = 20 - 18 =$ **2**.

We write $20 \div 6 = 3 R2$ (20 divided by 6 equals 3 with a remainder of 2.)