Suppose you want to multiply two 2-digit numbers. Let's say 43 x 26. What do you do?

You can expand and use the distributive property, just like you have been doing. BUT BE CAREFUL!

$$43 \times 26 = (40 + 3) \times (20 + 6)$$
. Now what do you do?

You must multiply BOTH the 20 and the 6 by the 40, AND you must ALSO multiply BOTH the 20 and the 6 by the 3.

This is easy to do using a grid. How does it work?

x	2 <u>0</u>	6
4 <u>0</u>	8 <u>00</u>	24 <u>0</u>
3	6 <u>0</u>	18

$$43 \times 26 = (40+3) \times (20+6)$$

You put the 40 and the 3 in the grid along the left.

You put the 20 and the 6 in the grid along the top.

Now, multiply, and put the products in the boxes:

 $40 \times 20 = 800$, so you put 800 in the top left box.

 $4\underline{0} \times 6 = 24\underline{0}$, so you put 240 in the top right box.

 $3 \times 20 = 60$, so you put 60 in the bottom left box.

 $3 \times 6 = 18$, so you put 18 in the bottom right box.

Finally, you add the four partial products (the numbers in the boxes).

800 + 240 + 60 + 18 = 1,118. (It's easier to add if the numbers are in a column.)

So, $43 \times 26 = 1,118$. Do you see why?

1. Write in expanded form, but do <u>not</u> multiply:

$$20 \times 82 =$$

2. Expand and multiply using the grid:
Use the space under (and next to) the grid to work in, but put *only* the products from your multiplication in the grid-boxes— just like in the example.

x 10 9
50 3

53 x 19 =			

X	40	8
50		
4		

X

72 x 35 = _____

X

39 x 43 = ____

X

65 2	x 60	=				
-------------	------	---	--	--	--	--

X

