Edexcel AS Mathematics Force and Newton's laws

Section 3: Connected objects

Exercise level 3 (Extension)

In all questions leave your answers in terms of g.

1. A particle X on a plane horizontal table is attached to the end of long, light, inextensible string at right angles to the edge of the table. The string passes over a smooth pulley at the edge of the table to hang with a second particle Y attached to the end. Assume that at no stage during motion does X reach the edge of the table or collide with the pulley. Do not substitute a value for g.
(i) If X has mass 3 kg and Y has mass 4 kg , find the acceleration of the system on the assumption that the table is smooth.
(ii) Suppose now that the table is not smooth, and the acceleration is found to be $\frac{g}{2} \mathrm{~ms}^{-2}$. Find the friction force.
(iii) Assuming that X has mass 3 kg still and the friction force is unchanged, what is the minimum mass for Y sufficient for motion to take place?
For the rest of the question assume once more that the table is smooth.
(iv) Now X has mass $m \mathrm{~kg}$ and Y has mass $n \mathrm{~kg}$. Find the acceleration $b \mathrm{~ms}^{-2}$.
(v) When X has mass $m \mathrm{~kg}$ what mass must Y have (in terms of m and n) to reduce the acceleration to $\frac{b}{2} \mathrm{~ms}^{-2}$?
(vi) When Y has mass $n \mathrm{~kg}$ what must the mass of X be (in terms of m and n) to make the acceleration $\frac{b}{2} \mathrm{~ms}^{-2}$?
2. A pulley system of strings, pulley wheels and suspended masses is shown in the diagram. The pulleys are light and free-running. Pulley A is fixed while pulley B is suspended from the end of one string is such a way that the plane of the pulley wheel stays vertical. Each pulley runs smoothly. The strings are light, inextensible, and hang vertically. The masses at X, Y, and Z are 4, 3 and 5 kg respectively.
(i) Draw separate diagrams to show the forces which act on the pulley B and on each of the masses X, Y, and Z.
(ii) What is the relationship between the accelerations of mass X and pulley B ?
(iii) If the acceleration of pulley B and of masses Y and Z are b, c and d respectively (in each case positive is downwards) explain why $2 b=c+d$.
(iv) Find the acceleration of each of the masses X and Y and the tension in the string which joins pulleys A and B. (Assume
 that at no stage do the masses collide!)
3. A single, free-running light pulley has its axle fixed horizontally to the wall of a lift. The pulley has a long, light, inextensible string running over it, with a 1 kg particle suspended by from one side and 2 kg suspended from the other.
(i) The system is held still and then released when the lift sets off. What is the

Edexcel AS Maths Force and Newton's laws 3 Exercise

apparent acceleration of each weight when the lift is accelerating upwards at $0.05 \mathrm{~g} \mathrm{~m}^{-2}$?
(ii) If instead each mass is suspended from its part of the string by a Newton metre of mass 0.25 kg what weight (force) will the Newton metre register in each case?

