Edexcel AS Mathematics Force and Newton's laws

Section 3: Connected objects

Exercise level 1

Take $\mathbf{g}=\mathbf{9 . 8} \mathbf{~ m s}^{-2}$ throughout this exercise.

1. A man of mass 72 kg is standing in a lift.
(i) Draw a diagram to show the forces acting on the man.

Find the normal reaction of the floor of the lift on the man in the following cases:
(ii) The lift is moving upwards with a constant speed of $4 \mathrm{~m} \mathrm{~s}^{-1}$.
(iii) The lift is moving upwards with an acceleration of $2 \mathrm{~m} \mathrm{~s}^{-2}$ upwards
(iv) The lift is moving upwards with an acceleration of $3 \mathrm{~m} \mathrm{~s}^{-2}$ downwards
(v) The lift is moving upwards and slowing down with a deceleration of $2 \mathrm{~m} \mathrm{~s}^{-2}$
(vi) The lift is moving downwards and slowing down with a deceleration of $3 \mathrm{~m} \mathrm{~s}^{-2}$.
2. Masses A of 150 g and B of 250 g are attached to the ends of a light, inextensible string passing over a smooth pulley as shown in this diagram.
Initially B is held at rest 1 m above the ground. B is then released.
(i) Draw a diagram for each mass showing the forces acting on it and the direction of its acceleration before B hits the ground.
(ii) Use Newton's second law to find the equation of motion for each mass in the direction it moves.
(iii) Find the acceleration of each mass.

(iv) Find the tension in the string.
(v) Find the time taken before B hits the ground.
3. Two particles, mass 3 kg and 9 kg respectively, are connected by a light inextensible string passing over a smooth pulley. Both masses hang vertically. Find the tension in the string and the acceleration when the system is released from rest.
4. An engine of mass 60000 kg pulls a truck of mass 12000 kg along a horizontal track. The engine experiences a resistance to motion of 80 N per kg and the truck a resistance of 50 N per kg. Given that the train is travelling at a constant speed, find the tractive force of the engine and the tension in the coupling between engine and truck.
5. A particle of mass 4 kg rests on a smooth horizontal table. It is connected by a light inextensible string which passes over a smooth pulley at the edge of the table to a mass of 1.5 kg that hangs freely. The system is released from rest. Find the acceleration and the tension in the string.
6. An engine of mass 50 tonnes pulls a train of mass 200 tonnes along a horizontal track. The resistance to the motion for the engine is 3000 N and the resistance to motion for the train is 7000 N . The engine is exerting a driving force of 60000 N . Find the acceleration of the system and the tension in the coupling between the engine and the train.

Edexcel AS Maths Force and Newton's laws 3

Exercise

7. A cube of mass 7 kg rests on top of a horizontal table. A smaller cube of mass 3 kg is placed on top of the 7 kg cube. Find the reaction between the two cubes and that between the larger cube and the table.
8.

Two particles P and Q , of masses 1.9 kg and 0.4 kg respectively, are connected by a light inextensible string. P is held on a smooth horizontal table with the string taut and passing over a small smooth pulley fixed at the edge of the table. Q is at rest vertically below the pulley. P is released. Find the acceleration of the particles and the tension in the string.

