Section 3: The constant acceleration formulae

Exercise level 2

1. A cyclist travels 1.3 km as he accelerates at a rate of $k \mathrm{~ms}^{-2}$ from $15 \mathrm{kmh}^{-1}$ to $30 \mathrm{kmh}^{-1}$. Find a value for k.
2. A cheetah has the ability to accelerate from rest to $108 \mathrm{kmh}^{-1}$ in 25 metres. Find the acceleration. What assumption have you made?
3. A train starts from rest and after 20 seconds is travelling at $30 \mathrm{~ms}^{-1}$. It travels at this speed for 1 minute. Find the acceleration in the first 20 s and the total distance travelled. What assumptions are inherent in the question?
4. A driver is keeping to a steady $70 \mathrm{kmh}^{-1}$ when she sees that 60 m ahead the road is blocked because of an accident. She immediately applies her brakes to produce a deceleration of $5 \mathrm{~ms}^{-2}$. Does she come to rest before the accident and if so by how much?
5. The Highway Code states that a car travelling at $20 \mathrm{~ms}^{-1}$ requires a minimum braking distance of 30 m . What deceleration is this and how long will it take for the car to come to rest?
6. A particle moves in a straight line increasing its velocity from $2 \mathrm{~ms}^{-1}$ to $16 \mathrm{~ms}^{-1}$ in 10 seconds. Find the acceleration of the particle in this time and the distance that it travels.
7. A girl standing on a bridge throws a stone vertically upwards at $6 \mathrm{~ms}^{-1}$. It hits the water below the bridge after 2 seconds. Find the speed at which the stone hits the water and the initial height of the stone.
8. A ball is thrown vertically upwards at $25 \mathrm{~ms}^{-1}$. Find the length of time for which the ball is above 3 m from the point of projection.
9. A train stops at two stations A and B. It accelerates from rest from station A to a speed of $144 \mathrm{kmh}^{-1}$ in 3 minutes and maintains this speed for 10 minutes. It then decelerates for 2 minutes and comes to rest at station B. Find the total distance between A and B.
10. A particle moving in a straight line with a constant acceleration covers 10 m in 2 seconds and 22 m in a further 2 seconds. How much further does it travel in the next two seconds?
11. A train is brought to rest with uniform deceleration. It travels 30 m in the first 2 seconds, and a further 30 m in the next 4 seconds. Find
(i) the initial velocity,
(ii) the deceleration,
(iii)total time to come to rest.
12. A particle accelerates from rest with an acceleration of $3 \mathrm{~ms}^{-2}$ to a speed V. It continues at this speed for time T and then decelerates to rest at $1.5 \mathrm{~ms}^{-2}$. The total time for the motion is 1 minute, and the total distance travelled is 1 km . Find a value for V.

Edexcel AS Maths Kinematics 3 Exercise

13. A ball is thrown vertically upwards at $25 \mathrm{~ms}^{-1}$ at the same time as another is thrown vertically downwards, from the same point, at $25 \mathrm{~ms}^{-1}$. How far apart are the balls after 2 seconds?
14. A bus sets off from stop A and accelerates uniformly for t_{1} seconds covering 300 m . It then travels at a constant speed v for t_{2} seconds covering another 1250 m . It decelerates for t_{3} seconds to come to rest at stop B. Given that the total time for the journey is 3 minutes and that $2 t_{1}=3 t_{3}$, find t_{1}, t_{2}, t_{3}, v, and the distance AB.
15. A particle P_{1} is projected vertically upwards, from horizontal ground, with a speed of 30 $\mathrm{m} \mathrm{s}^{-1}$. At the same instant another particle P_{2} is projected vertically upwards from the top of a tower of height 25 m , with a speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$. Find
(i) The time for which P_{1} is higher than the top of the tower,
(ii) The velocities of the particles at the instant when the particles are at the same height,
(iii) The time for which P_{1} is higher than P_{2} and is moving upwards.
