Section 3: The constant acceleration formulae

Exercise level 1

In this exercise take $\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2}$.

1. (i) Find v when $u=5, a=3, t=2$. (ii) Find v when $u=4, a=-2, t=3$.
(iii) Find s when $v=10, u=4, a=6$. (iv) Find s when $u=15, a=-5, t=3$.
2. (i) Find a when $u=6, s=4, v=1$. (ii) Find a when $s=12, u=3, t=4$.
(iii) Find u when $v=0, a=4, s=-12$. (iv) Find u when $s=10, t=2, a=-4$.
3. (i) If $u=5, a=2$ and $t=3$ find v and s.
(ii) If $v=-18, s=-64$ and $t=8$ find a and u.
4. In each case, decide which of the suvat equations is most useful.
(i) Given v, a, s; find u
(ii) Given u, v, a; find t
(iii) Given u, v, s; find t
(iv) Given u, s, t; find a
(v) Given u, s, t find v
5. A car accelerates from rest uniformly to $17 \mathrm{~ms}^{-1}$ in 30 seconds. Find the distance travelled in this time.
6. A car starting from rest reaches a speed of $80 \mathrm{~km} \mathrm{~h}^{-1}$ in 10 s .
(i) Find the acceleration of the car in ms^{-2}
(ii) Find the distance travelled in this time.
7. A ball is thrown vertically upwards at $3 \mathrm{~m} \mathrm{~s}^{-1}$ from 1 m above ground level.
(i) Write down an equation that models the height of the ball above the ground after t seconds (while the ball is in the air).
(ii) Use your answer to part (i) to find the time it takes the ball to reach the ground.
(iii) How fast is the ball moving just before it hits the ground?
(iv) State an assumption that you have made.
8. A car is travelling along a straight road. It accelerates uniformly from rest to a speed of $18 \mathrm{~m} \mathrm{~s}^{-1}$ and maintains this speed for 8 minutes. It then decelerates uniformly to rest. If the acceleration and deceleration are $3 \mathrm{~m} \mathrm{~s}^{-2}$ and $6 \mathrm{~m} \mathrm{~s}^{-2}$ respectively, find the total journey time and the total distance travelled during the journey.
9. A circus artist drops a ball from a high wire. The ball takes 1.5 s to reach the ground.
(i) Find the height of the high wire above the ground.
(ii) Write an expression for the speed of the ball t seconds after it is dropped where $0 \leq t \leq 1.5$.
(iii) How fast is the ball moving as it hits the ground?
