Section 2: Velocity and acceleration

Exercise level 2

1. A and B are two stations on a line. An express train passes through A at $t=0$ and, maintains a constant speed of $120 \mathrm{kmh}^{-1}$ for 45 minutes. In this time it covers $\frac{6}{7}$ of the distance from A to B. The train then decelerates uniformly to rest at B.
(i) Draw a velocity-time graph for the motion from A to B.
(ii) Find the distance from A to B .
(iii) Find the final deceleration in ms^{-2}.
2. From the graph below find
(i) the distance travelled in the first 10 seconds,
(ii) the acceleration when $t=20$,
(iii) the total distance travelled.

3. The total distance travelled during the motion modelled by the velocity-time graph below is 900 m . Use this information and the graph to find V.

4. In the motion modelled by in the graph below, the initial acceleration is $2 \mathrm{~ms}^{-2}$.

(i) Find T.
(ii) Find the total distance travelled.
(iii) Find the average speed for the whole journey.

Edexcel AS Maths Kinematics 2 Exercise

5. A train takes 12 minutes to travel the 12 km between Parkway and Haymarket. It starts from rest at Parkway and accelerates uniformly to a speed of $V \mathrm{kmh}^{-1}$ in 5 minutes. It then decelerates uniformly to come to rest at Haymarket. Draw a velocity-time graph to represent this motion and use this to find a value for V. Are the assumptions made in this question realistic?
6. A train stops at both Newcastle and Durham, 30 km apart. Starting from Newcastle it takes 4 minutes to accelerate uniformly to $40 \mathrm{~ms}^{-1}$, maintaining this speed until, with uniform deceleration over 1500 m , it comes to rest in Durham. Find the total time for the journey.
