Section 2: Velocity and acceleration

Exercise level 1

1. From the velocity-time graph shown find
(i) The acceleration in the first 10 seconds,
(ii) The deceleration in the last 5 seconds,
(iii) The total distance travelled.

2. (i) Calculate the acceleration for each part of the journey shown by this graph:

(ii) Sketch an acceleration-time graph for the journey.
3.

For the graph above, the time for the whole journey is 45 seconds. The acceleration between T and $3 T$ is $-1.5 \mathrm{~ms}^{-2}$. Find
(i) the value of T,
(ii) the value of V.
4. A, B, C, and D lie in a straight line. A particle starts from rest at A and moves from A to B with a uniform acceleration for 2 seconds reaching a speed of $12 \mathrm{~ms}^{-1}$. The acceleration then halves and the particle takes 10 seconds to reach C . The particle then decelerates uniformly for a further 10 seconds before coming to rest at D .
(i) Draw a velocity-time graph for the motion.

Edexcel AS Maths Kinematics 2 Exercise

(ii) Find the acceleration from A to B and from B to C .
(iii) Find the speed of the particle at C .
(iv) Find the deceleration from C to D .
5. This graph shows the speed of a car travelling along in a traffic queue.

Find:
time (s)
(i) the acceleration for each part of the motion
(ii) the total distance it travels in the 20s shown
(iii) the average speed of the car.

Is this graph a realistic model for the situation?
6. This graph shows the speed of a car as it gradually slows down.

time (s)

Find:
(i) the acceleration for each part of the motion
(ii) the total distance it travels in the 16 s shown
(iii) the average speed of the car

