Edexcel AS Mathematics Variable acceleration

Section 1: Using calculus

Exercise level 3 (Extension)

1. One particle moves on a straight line so that its displacement from the origin is given by $s_{2}=t^{3}+5 t^{2}+4 t+30$; a second moves so that its displacement is $s_{1}=t^{3}+4 t^{2}+7 t+5$.
(i) When are the two particles closest together?
(ii) How far apart are they at that moment?
(iii) For what range of values of t are they moving apart?
(iv) Is there a time when they are furthest apart?
2. (i) Here is a graph which makes a first attempt to model a short train journey. It is based on observations of the train's speed at times t_{1}, t_{2} and on its starting and stopping times.

(a) Describe in words the three sections of the journey. Write down the values of v (velocity) at times t_{1}, t_{2}, t_{3}.
(b) Find v as a function of t (time) for the model.
(c) Find an expression for the displacements corresponding to the three sections of the journey in terms of $v_{1}, t_{1}, t_{2}, t_{3}$.
(ii) A second model has the form

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}= \begin{cases}A t\left(t-t_{1}\right) & 0<t<t_{1} \\ 0 & t_{1}<t<t_{2} \\ B\left(t-t_{2}\right)\left(t-t_{3}\right) & t_{2}<t<t_{3}\end{cases}
$$

where A and B are constants. Show that an expression for v in terms of t using the values from 2(i)(a) to determine A, B and the constants of integration is

$$
v= \begin{cases}\frac{v_{1} t^{2}}{t_{1}^{3}}\left(3 t_{1}-2 t\right) & 0 \leq t \leq t_{1} \\ v_{1} & t_{1}<t \leq t_{2}\end{cases}
$$

and determine the corresponding form of v when $t_{2}<t \leq t_{3}$.
Draw a sketch of the new model's velocity-time graph superimposed on a copy of the graph above. Do you think the new model may be more realistic?

Edexcel AS Maths Variable acceleration 1 Exercise

3. (i) Compare the displacements of the two models in question 2 over the time interval when the train is accelerating.
(ii) Calculate the maximum acceleration of the model in question 2(ii) when $0<t<t_{1}$ and compare it with the corresponding acceleration of the model in 2(i).
