Section 1: Using calculus

Exercise level 1

1. For each of the following:
(i) find an expression for the velocity,
(ii) calculate the initial position and initial velocity,
(iii) find the time and position when the velocity is 0 .
(a) $s=5+3 t-2 t^{2}$
(b) $s=4 t^{2}-3 t$
(c) $s=2 t^{3}-4 t^{2}-8 t+3$
2. For each of the following:
(i) find an expression for the acceleration,
(ii) calculate the initial velocity and initial acceleration.
(a) $v=3 t+2$
(b) $v=4 t^{2}-3 t+5$
(c) $v=4 t^{3}-3 t^{2}+5$
3. Given that $v=3 t+2$ and that when $t=0, x=5$,
(i) Find x in terms of t.
(ii) Find x when $v=26$.
(iii) Find v when $x=10$.
(iv) Find a.
4. The displacement of particle P from a fixed point O at time t seconds is given by $s=t^{3}+2 t^{2}+3 t+4$. Find expressions for the velocity $v \mathrm{~ms}^{-1}$ and the acceleration $a \mathrm{~ms}^{-2}$ and hence find the values of v and a when $t=2$.
5. The displacement, $s \mathrm{~m}$, at time t seconds, of a particle from a fixed point is given by $s=2 t^{2}+3 t-2$.
(i) Find the initial displacement and the initial velocity.
(ii) Find any times at which the velocity is zero.
(iii) Find any times at which the particle is at the origin.
6. For a particle moving in a straight line the displacement at time t from a fixed point O is given by $s=t^{3}-2 t^{2}-15 t$.
Find:
(i) The initial velocity and acceleration.
(ii) The times at which the velocity is zero.
(iii) The minimum velocity.
7. The velocity of a particle moving in a straight line at time t is given by $v=2 t^{3}-9 t^{2}$. Given that the initial displacement $s=20$, find an expression for s in terms of t and the times when the acceleration is zero.

Edexcel AS Maths Variable acceleration 1 Exercise

8. The velocity of a particle moving in a straight line at time t is given by $v=8 t-3 t^{2}$. The particle is initially at O. Find:
(i) v when $t=2$
(ii) an expression for the acceleration of the body at time t
(iii) the acceleration when $t=3$
(iv) an expression for the displacement of the body from O at time t
(v) how far the body is from O when $t=3$
9. A particle passes through a fixed point O such that its acceleration t seconds later is given by $a=3+2 t$. Given that $v=10$ when $t=2$, find the displacement attained in the interval $2 \leq t \leq 4$.
10. A body moves so that its displacement, $s \mathrm{~m}$, from a fixed point O after t seconds is given by $s=t^{3}-3 t^{2}-9 t$.
(i) Find the velocity after t seconds.
(ii) When is the body instantaneously at rest?
(iii) Sketch the velocity-time and acceleration-time graphs.
11. An object moving in a straight line has an initial velocity of $2 \mathrm{~ms}^{-1}$ at point O on the line. The acceleration t seconds later is given by $a=2 t-6$.
(i) Find expressions for the velocity $v \mathrm{~ms}^{-1}$ and the displacement $s \mathrm{~m}$ in terms of t.
(ii) Calculate s and v when $t=5$ and comment on your answers.
