

Section 3: Bivariate data

Exercise level 3

- 1. The four box plots below are for the following four variables (but not in that order) for a random sample of adult women.
 - Height in cm.
 - Systolic blood pressure in mm Hg.
 - Waist measurement in cm.
 - Weight in kg.

Each of the two scatter diagrams below shows the relationship between two of the four variables.

Scatter diagram A

Scatter diagram B

- (i) Decide which box plot shows each of the variables. Explain your reasoning.
- (ii) Decide which variable is on which axis for each of the two scatter diagrams. Explain your reasoning.
- (iii) Interpret what each scatter diagram says about association between specific measurements for adult women.

Edexcel Collecting and interpreting data

2. The scatter diagram below shows the relationship between engine size and CO_2 emissions for a random sample of cars.

(i) A correlation coefficient is a measure of correlation.
It is a number between -1 and 1, with -1 representing perfect negative correlation, 0 representing no correlation, and 1 representing perfect positive correlation.

Match the correlation coefficients from the following list to the data set below. In each case, justify your choice.

Correlation coefficients: 0.611, 0.788, 0.894

- (A) Petrol cars data set.
- (B) Diesel cars data set.
- (C) All cars data set (i.e. petrol and diesel combined).
- (ii) For which of the three data sets would a straight line of best fit provide the most appropriate model of the relationship between engine size and CO_2 emissions? Justify your answer.
- (iii) Does knowing whether a car is fuelled by petrol or diesel help to predict its CO₂ emissions? Justify your answer.