Edexcel AS Further Mathematics Matrices

Section 3: Invariance

Exercise level 3

Note: a translation is not a linear transformation (since the origin is not mapped to itself), so it cannot be represented by a 2×2 matrix. However a translation can be represented by a 3×3 matrix, as shown in the questions below.

1. T is a translation of the plane by the vector $\binom{-3}{1}$.
(i) Show that the matrix $\left(\begin{array}{ccc}1 & 0 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ maps the point $\left(\begin{array}{l}p \\ q \\ 1\end{array}\right)$ and $\left(\begin{array}{c}p-3 \\ q+1 \\ 1\end{array}\right)$.
(ii) Point (X, Y) is the image of (x, y) under a combined transformation TM such that $\left(\begin{array}{l}X \\ Y \\ 1\end{array}\right)=\left(\begin{array}{ccc}0 & 2 & -3 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)$.

Find any invariant points and invariant lines of the combined transformation.
2. S is a translation of the plane by the vector $\binom{3}{-3}$.

The image of (x, y) under a combined transformation SN is such that
$\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right)=\left(\begin{array}{ccc}2 & -1 & 3 \\ 3 & 4 & -3 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)$.
Find any invariant points of this combined transformation and show that there are no invariant lines.

