Edexcel AS Further Mathematics Inverse matrices "integral

Section 3: Matrices and simultaneous equations

Exercise level 3

1. Consider the following simultaneous equations:

$$
\begin{aligned}
& a x+b y=1 \\
& b x+a y=b
\end{aligned}
$$

(i) Find conditions on a and b for which the simultaneous equations have a unique solution.
(ii) Solve the simultaneous equations for $a=2$ giving the solution in terms of b. For which values of b will the solution lie on the line $y=x$?
2. (i) Find the value of λ given that

$$
\mathbf{T}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) \text { and } \mathbf{T}^{-1}=\frac{1}{2}\left(\begin{array}{ccc}
\lambda & 1 & -1 \\
1 & -1 & 1 \\
-1 & 1 & \lambda
\end{array}\right)
$$

(ii) Solve

$$
\begin{array}{rrr}
Z & +Y & \\
Z & =a \\
& +X & =b \\
Y & +X & =c
\end{array}
$$

for Z, Y and X.
(iii) If $a+b-c>0, b+c-a>0$ and $c+a-b>0$, solve

$$
\begin{array}{rll}
x y+x z & & =a \\
x y & +y z & =b \\
x z+y z & =c
\end{array}
$$

for x, y and z.
3. Consider the following simultaneous equations
$x \cos \theta-y \sin \theta=3$
$x \sin \theta+y \cos \theta=4$
(i) Show that the simultaneous equations have a unique solution for each and every value of θ.
(ii) Solve the simultaneous equations for $\theta=30^{\circ}$.
(iii) Find the Cartesian equation of the locus of points that satisfy the simultaneous equations as the value of θ varies.
4. The matrix $\mathbf{A}=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & a \\ 1 & 0 & b\end{array}\right)$.
(i) Find \mathbf{A}^{-1}.

Edexcel AS FM Inverse matrices 3 Exercise

(ii) For what values of a, b and c does $\mathbf{A}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}c \\ 1 \\ 1\end{array}\right)$ have a unique solution?
(iii) You are told that this equation has solutions, but not a unique one. What can you say about a, b and c now?
5. You are given the matrix equation $\left(\begin{array}{lll}2 & a & b \\ 4 & c & d \\ 8 & 4 & 12\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}p \\ q \\ 20\end{array}\right)$.

This represents the equations for three planes.
Find values for a, b, c, d, p and q that give the following situations:
(i) the three planes meet at a point
(ii)the three planes form a triangular prism
(iii)two of the planes are parallel, the third is not
(iv)all three planes are parallel and distinct
(v) the three planes share a line (sheaf of planes)

