## **Section 1: Determinants and inverses**

## **Exercise level 3**

1. (i) For two general matrices  $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$  and  $\mathbf{B} = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$ , show that

 $\det(\mathbf{AB}) = \det \mathbf{A} \det \mathbf{B}$ .

- (ii) A 2x2 matrix **M** represents a transformation T which transforms (1, 0) and (0, 1) to (1, 1) and (-1, 1) respectively.
  - (a) Find **M**.
  - (b) Given that **M** can be written as  $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$  and  $\begin{vmatrix} \alpha & \beta \\ \gamma & \delta \end{vmatrix} = 1$ , find the value of  $\lambda$ , where  $\lambda > 0$ .
  - (c) Describe the geometric meaning of T.

2. Let 
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 1 & 3 \end{pmatrix}$$
 and  $\mathbf{B} = \begin{pmatrix} -2 & 0 \\ 1 & \lambda \end{pmatrix}$ ,  $\lambda \neq 0$ .  
(i) Show that  $\mathbf{B}^{-1}$  exists.  
(ii) Given that  $\mathbf{B}^{-1}\mathbf{A}\mathbf{B} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ , find  $\lambda$ ,  $a$  and  $b$ .  
(iii) Show that  $(\mathbf{B}^{-1}\mathbf{A}\mathbf{B})^2 = \mathbf{B}^{-1}\mathbf{A}^2\mathbf{B}$ .  
(iv) Find  $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}^{100}$  and hence find  $\mathbf{A}^{100}$ .

3. (i) Find two values of 
$$\alpha$$
 such that  $\det \begin{pmatrix} -2 - \alpha & \sqrt{3} \\ \sqrt{3} & -\alpha \end{pmatrix} = 0$ .

(ii) Let  $\alpha_1$  and  $\alpha_2$  be the values obtained in (i), where  $\alpha_1 < \alpha_2$ . Find  $\theta_1$  and  $\theta_2$  such that

$$\begin{pmatrix} -2 - \alpha_1 & \sqrt{3} \\ \sqrt{3} & -\alpha_1 \end{pmatrix} \begin{pmatrix} \cos \theta_1 \\ \sin \theta_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ 0 \le \theta_1 \le \pi$$

$$\begin{pmatrix} -2 - \alpha_2 & \sqrt{3} \\ \sqrt{3} & -\alpha_2 \end{pmatrix} \begin{pmatrix} \cos \theta_2 \\ \sin \theta_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ 0 \le \theta_2 \le \pi .$$

$$\begin{pmatrix} \cos \theta_1 & \cos \theta_2 \\ \sin \theta_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

(iii) Let  $\mathbf{P} = \begin{pmatrix} \cos \theta_1 & \cos \theta_2 \\ \sin \theta_1 & \sin \theta_2 \end{pmatrix}$ . Evaluate  $\mathbf{P}^2$  and hence find  $\mathbf{P}^n$  for the cases when *n* is even and *n* is odd.

