Edexcel AS Further Mathematics Inverse matrices "integral

Section 1: Determinants and inverses

Exercise level 3

1. (i) For two general matrices $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$, show that $\operatorname{det}(\mathbf{A B})=\operatorname{det} \mathbf{A} \operatorname{det} \mathbf{B}$.
(ii) A 2×2 matrix \mathbf{M} represents a transformation T which transforms $(1,0)$ and $(0,1)$ to $(1,1)$ and $(-1,1)$ respectively.
(a) Find \mathbf{M}.
(b) Given that \mathbf{M} can be written as $\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right)\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ and $\left|\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right|=1$, find the value of λ, where $\lambda>0$.
(c) Describe the geometric meaning of T.
2. Let $\mathbf{A}=\left(\begin{array}{ll}1 & 0 \\ 1 & 3\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}-2 & 0 \\ 1 & \lambda\end{array}\right), \lambda \neq 0$.
(i) Show that \mathbf{B}^{-1} exists.
(ii) Given that $\mathbf{B}^{-1} \mathbf{A B}=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, find λ, a and b.
(iii) Show that $\left(\mathbf{B}^{-1} \mathbf{A B}\right)^{2}=\mathbf{B}^{-1} \mathbf{A}^{2} \mathbf{B}$.
(iv) Find $\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)^{100}$ and hence find \mathbf{A}^{100}.
3. (i) Find two values of α such that $\operatorname{det}\left(\begin{array}{cc}-2-\alpha & \sqrt{3} \\ \sqrt{3} & -\alpha\end{array}\right)=0$.
(ii) Let α_{1} and α_{2} be the values obtained in (i), where $\alpha_{1}<\alpha_{2}$.

Find θ_{1} and θ_{2} such that

$$
\begin{aligned}
& \left(\begin{array}{cc}
-2-\alpha_{1} & \sqrt{3} \\
\sqrt{3} & -\alpha_{1}
\end{array}\right)\binom{\cos \theta_{1}}{\sin \theta_{1}}=\binom{0}{0}, 0 \leq \theta_{1} \leq \pi \\
& \left(\begin{array}{cc}
-2-\alpha_{2} & \sqrt{3} \\
\sqrt{3} & -\alpha_{2}
\end{array}\right)\binom{\cos \theta_{2}}{\sin \theta_{2}}=\binom{0}{0}, 0 \leq \theta_{2} \leq \pi .
\end{aligned}
$$

(iii) Let $\mathbf{P}=\left(\begin{array}{cc}\cos \theta_{1} & \cos \theta_{2} \\ \sin \theta_{1} & \sin \theta_{2}\end{array}\right)$. Evaluate \mathbf{P}^{2} and hence find \mathbf{P}^{n} for the cases when n is even and n is odd.

