Edexcel AS Further Mathematics Matrices

Section 1: Introduction to matrices

Exercise level 3

1. Find the values of a, b and c such that

$$
\left(\begin{array}{ll}
a & 4 \\
5 & 1
\end{array}\right)+c\left(\begin{array}{cc}
1 & b \\
-2 & 0
\end{array}\right)=\left(\begin{array}{cc}
5 & 1 \\
-1 & 1
\end{array}\right)
$$

2. A 2×2 matrix of the form $\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ is called a diagonal matrix.
(i) Show that the product of two diagonal matrices is also diagonal.
(ii) Let $\mathbf{A}=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$. Find an expression for \mathbf{A}^{n} in terms of a and b.
3. Let $\mathbf{A}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
(i) Find \mathbf{A}^{2} and \mathbf{A}^{3}.
(ii) From your results, express the general matrix \mathbf{A}^{k} in terms of k.
(iii) By multiplying your \mathbf{A}^{k} by \mathbf{A}, find \mathbf{A}^{k+1}. Explain how this supports your expression for \mathbf{A}^{k}.
(iv) Find the values of a and b in terms of n such that $\mathbf{A}^{n}+a \mathbf{A}+b \mathbf{I}=0$, where $\mathbf{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the 2×2 identity matrix.
