Edexcel AS Further Mathematics Matrices

Section 1: Introduction to matrices

Exercise level 3

1. Find the values of a, b and c such that

$$\begin{pmatrix} a & 4 \\ 5 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & b \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ -1 & 1 \end{pmatrix}.$$

- 2. A 2x2 matrix of the form $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ is called a diagonal matrix.
 - (i) Show that the product of two diagonal matrices is also diagonal.
 - (ii) Let $\mathbf{A} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$. Find an expression for \mathbf{A}^n in terms of a and b.
- 3. Let $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
 - (i) Find A^2 and A^3 .
 - (ii) From your results, express the general matrix \mathbf{A}^k in terms of k.
 - (iii) By multiplying your \mathbf{A}^k by \mathbf{A} , find \mathbf{A}^{k+1} . Explain how this supports your expression for \mathbf{A}^k .
 - (iv) Find the values of a and b in terms of n such that $\mathbf{A}^n + a\mathbf{A} + b\mathbf{I} = 0$, where $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the 2x2 identity matrix.

