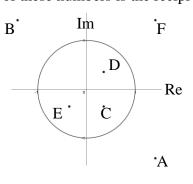


Section 1: Modulus and argument

Exercise level 3

- 1. (i) Show that $|z w|^2 = zz^* zw^* wz^* + ww^*$.
 - (ii) Given that |z+w| = 3 and |z| = |w| = 2, find |z-w|.
- 2. (i) Given a complex number z = a + ib, find $\frac{1}{z}$.
 - (ii) Several numbers are shown in the Argand diagram below. The circle has radius 1 and centre at the origin.Which of these numbers is the reciprocal of F?



3. (i) Show that
$$\left(\frac{z}{w}\right)^* = \frac{z^*}{w^*}$$
.

- (ii) Given that $z, w \neq 0$ and |z+w| = |z-w|, show that $\frac{z}{w} + \frac{z^*}{w^*} = 0$ and hence find all possible values of $\arg\left(\frac{z}{w}\right)$.
- 4. (i) $z_1 = \frac{1}{2}(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}), z_2 = 2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$ The triangle with vertices O, z_1 and z_2 has area A. Find A.
 - (ii) Show that the triangle with vertices O, z_1^2 and z_2^2 also has area A.
 - (iii) Suppose $z_1 = r(\cos a + i \sin a)$ and $z_2 = s(\cos b + i \sin b)$, where $0 \le a < b \le \frac{\pi}{2}$, and the two triangles with vertices O, z_1 and z_2 and O, z_1^2 and z_2^2 have equal areas. Show that $\cos(b-a) = \frac{1}{2rs}$.
 - (iv) Show that if $s = \frac{1}{r}$, then the areas of the two triangles are equal if and only if $b a = \frac{\pi}{2}$.

