Edexcel AS Further Maths Complex numbers

Section 1: Modulus and argument

Exercise level 3

1. (i) Show that $|z-w|^{2}=z z^{*}-z w^{*}-w z^{*}+w w^{*}$.
(ii) Given that $|z+w|=3$ and $|z|=|w|=2$, find $|z-w|$.
2. (i) Given a complex number $z=a+\mathrm{i} b$, find $\frac{1}{z}$.
(ii) Several numbers are shown in the Argand diagram below. The circle has radius 1 and centre at the origin.
Which of these numbers is the reciprocal of F ?

3. (i) Show that $\left(\frac{z}{w}\right)^{*}=\frac{z^{*}}{w^{*}}$.
(ii) Given that $z, w \neq 0$ and $|z+w|=|z-w|$, show that $\frac{z}{w}+\frac{z^{*}}{w^{*}}=0$ and hence find all possible values of $\arg \left(\frac{z}{w}\right)$.
4. (i) $z_{1}=\frac{1}{2}\left(\cos \frac{\pi}{2}+\mathrm{i} \sin \frac{\pi}{2}\right), z_{2}=2\left(\cos \frac{\pi}{6}+\mathrm{i} \sin \frac{\pi}{6}\right)$

The triangle with vertices O, z_{1} and z_{2} has area A. Find A.
(ii) Show that the triangle with vertices O, z_{1}^{2} and z_{2}^{2} also has area A .
(iii) Suppose $z_{1}=r(\cos a+\mathrm{i} \sin a)$ and $z_{2}=s(\cos b+\mathrm{i} \sin b)$, where $0 \leq a<b \leq \frac{\pi}{2}$, and the two triangles with vertices O, z_{1} and z_{2} and O, z_{1}^{2} and z_{2}^{2} have equal areas. Show that $\cos (b-a)=\frac{1}{2 r s}$.
(iv) Show that if $s=\frac{1}{r}$, then the areas of the two triangles are equal if and only if $b-a=\frac{\pi}{3}$.

