## Section 1: Polar coordinates and curves

## Exercise level 1 solutions

1. (i) $x=4, y=4$
$r=\sqrt{x^{2}+y^{2}}=\sqrt{16+16}=4 \sqrt{2}$
$\tan \theta=\frac{4}{4}=1$
since point is in first quadrant, $\theta=\frac{\pi}{4}$


Polar coordinates are $\left(4 \sqrt{2}, \frac{\pi}{4}\right)$
(ii) $x=1, y=\sqrt{3}$
$r=\sqrt{x^{2}+y^{2}}=\sqrt{1+3}=2$
$\tan \theta=\frac{\sqrt{3}}{1}=\sqrt{3}$
since point is in first quadrant, $\theta=\frac{\pi}{3}$
Polar coordinates are $\left(2, \frac{\pi}{3}\right)$
(iii) $x=-3, y=4$
$r=\sqrt{x^{2}+y^{2}}=\sqrt{9+16}=5$
$\tan \theta=-\frac{4}{3}$
Since point is in second quadrant, $\theta=\pi-\arctan \frac{4}{3}=2.21$ (3 s.f.)
Polar coordinates are $\left(5,2.21^{\circ}\right)$ ( $3 \mathrm{s.f}$. )
(iv) $x=-5, y=-12$
$r=\sqrt{x^{2}+y^{2}}=\sqrt{25+144}=13$
$\tan \theta=\frac{12}{5}$
since point is in third quadrant, $\theta=\pi+\arctan \frac{5}{12}=4.32$
Polar coordinates are $\left(13,4.32^{\circ}\right)$
2. (i) $r=4, \theta=\frac{\pi}{3}$
$x=r \cos \theta=4 \cos \frac{\pi}{3}=4 \times \frac{1}{2}=2$
$y=r \sin \theta=4 \sin \frac{\pi}{3}=4 \times \frac{\sqrt{3}}{2}=2 \sqrt{3}$
cartesian coordinates are $(2,2 \sqrt{3})$
(ii) $r=5, \theta=\frac{\pi}{2}$
$x=r \cos \theta=5 \cos \frac{\pi}{2}=5 \times 0=0$
$y=r \sin \theta=5 \sin \frac{\pi}{2}=5 \times 1=5$
cartesian coordinates are $(0,5)$
(iii) $r=8, \theta=\frac{5 \pi}{4}$
$x=r \cos \theta=8 \cos \frac{5 \pi}{4}=8 \times-\frac{1}{\sqrt{2}}=-4 \sqrt{2}$
$y=r \sin \theta=8 \sin \frac{5 \pi}{4}=8 \times-\frac{1}{\sqrt{2}}=-4 \sqrt{2}$
cartesian coordinates are $(-4 \sqrt{2},-4 \sqrt{2})$
(iv) $r=6, \theta=\frac{11 \pi}{6}$
$x=r \cos \theta=6 \cos \frac{11 \pi}{6}=6 \times \frac{\sqrt{3}}{2}=3 \sqrt{3}$
$y=r \sin \theta=6 \sin \frac{11 \pi}{6}=6 \times-\frac{1}{2}=-3$
cartesian coordinates are $(3 \sqrt{3},-3)$

Edexcel FM Polar coordinates 1 Exercise solutions
3. (i) $r=\sin 2 \theta$


Edexcel FM Polar coordinates 1 Exercise solutions
(íii) $r=1+\cos \theta$

(iv) $r=1+2 \cos \theta$

(v) $r=3+2 \sin \theta$


## Edexcel FM Polar coordinates 1 Exercise solutions

4. (¿) $r=\cos 3 \theta$ for $0 \leq \theta \leq \pi$

(ii) $r=\cos 3 \theta$ for $-\frac{1}{2} \pi \leq \theta \leq \frac{1}{2} \pi$


In the first graph:
For $\frac{\pi}{2}<\theta<\frac{5 \pi}{6}, \frac{3 \pi}{2}<3 \theta<\frac{5 \pi}{2}$ so $\cos 3 \theta>0$
This is shown by a solid line in the $2^{\text {nd }}$ quadrant.
For $\frac{5 \pi}{6}<\theta<\pi, \frac{5 \pi}{2}<\theta<3 \pi$ so $\cos 3 \theta<0$.
This is shown by a broken line in the $4^{\text {th }}$ quadrant.
In the second graph:
For $-\frac{\pi}{2}<\theta<-\frac{\pi}{6},-\frac{3 \pi}{2}<3 \theta<-\frac{\pi}{2}$ so $\cos 3 \theta<0$
This is shown by a broken line in the $2^{\text {nd }}$ quadrant.
For $-\frac{\pi}{6}<\theta<0,-\frac{\pi}{2}<3 \theta<0$ so $\cos 3 \theta>0$.
This is shown by a solid line in the $4^{\text {th }}$ quadrant.
Both graphs are the same for $0<\theta<\frac{\pi}{2}$ :
For $0<\theta<\frac{\pi}{6}, \quad 0<3 \theta<\frac{\pi}{2}$ so $\cos 3 \theta>0$
This is shown by a solid line in the $1^{\text {st }}$ quadrant.
For $\frac{\pi}{6}<\theta<\frac{\pi}{2}, \frac{\pi}{2}<\theta<\frac{3 \pi}{2}$ so $\cos 3 \theta<0$.
This is shown by a broken line in the $2^{\text {nd }}$ quadrant.
5. (i) $r=\cos \theta$
$r^{2}=r \cos \theta$
$x^{2}+y^{2}=x$
(ii) $r=\sin 2 \theta$
$r=2 \sin \theta \cos \theta$
$r^{3}=2 \times r \sin \theta \times r \cos \theta$
$\left(x^{2}+y^{2}\right)^{\frac{3}{2}}=2 x y$
$\left(x^{2}+y^{2}\right)^{3}=4 x^{2} y^{2}$
(iii) $r=1+\cos \theta$
$r^{2}=r+r \cos \theta$
$x^{2}+y^{2}=\sqrt{x^{2}+y^{2}}+x$
(iv) $r=\sec \left(\theta-\frac{\pi}{6}\right)$
$r \cos \left(\theta-\frac{\pi}{6}\right)=1$
$r \cos \theta \cos \frac{\pi}{6}+r \sin \theta \sin \frac{\pi}{6}=1$
$x \times \frac{1}{2} \sqrt{3}+y \times \frac{1}{2}=1$
$x \sqrt{3}+y=2$
6. (i) $y=x^{2}$
$r \sin \theta=(r \cos \theta)^{2}$
$r \sin \theta=r^{2} \cos ^{2} \theta$
$r \cos ^{2} \theta=\sin \theta$
$r=\frac{\sin \theta}{\cos ^{2} \theta}=\tan \theta \sec \theta$
(ii) $(x-1)^{2}+y^{2}=5$
$(r \cos \theta-1)^{2}+(r \sin \theta)^{2}=5$
$r^{2} \cos ^{2} \theta-2 r \cos \theta+1+r^{2} \sin ^{2} \theta=5$
$r^{2}-2 r \cos \theta=4$
(iii) $x y=1$
$r \cos \theta \times r \sin \theta=1$
$r^{2} \times 2 \sin \theta \cos \theta=2$
$r^{2} \sin 2 \theta=2$

## Edexcel FM Polar coordinates 1 Exercise solutions

(iv) $\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}$

$$
\begin{aligned}
& \left(r^{2}\right)^{2}=r^{2} \cos ^{2} \theta-r^{2} \sin ^{2} \theta \\
& r^{4}=r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& r^{2}=\cos 2 \theta
\end{aligned}
$$

