

Section 3: Further integration

Exercise level 3 solutions

1.
$$\frac{1}{x^2 + 2x + k} = \frac{1}{(x+1)^2 - 1 + k}$$

If $k \geq 2$, the constant term is positive so you can use an arctan integration

If
$$k = 1$$
, you have $\int \frac{1}{(x+1)^2} dx = -\frac{1}{x+1} + c$
If $k = 0$, you have $\int \frac{1}{x(x+1)} dx$ so you can use partial fractions
If $k \leq -1$, the constant term is negative so the denominator can be written as the

difference of two squares and you can use partial fractions.

