Edexcel A level Maths Projectiles

Section 1: Introduction

Solutions to Exercise level 2

1. (i) Horizontally: $v_x = 50\cos 30^\circ = 25\sqrt{3}$ Vertically: $v_y = u + at$ $= 50\sin 30^\circ - 9.8 \times 2$ = 5.4

Speed =
$$\sqrt{(25\sqrt{3})^2 + 5.4^2}$$
 = 43.6 ms⁻¹ (3 s.f.)
tan $\theta = \frac{5.4}{25\sqrt{3}}$

The velocity is 43.6 ms⁻¹ at an angle of 7.1° above the horizontal.

(ii) At greatest height, $v_y = 0$ Vertically: $0 = 50 \sin 30^\circ - 9.8t$ $t = \frac{25}{9.8}$

The time taken to reach the greatest height is 2.55 seconds (3 s.f.)

(iii) Vertically: $y = 50t \sin 30^{\circ} - \frac{1}{2}gt^{2}$ $= 25 \times \frac{25}{9.8} - \frac{9.8}{2} \left(\frac{25}{9.8}\right)^{2}$ = 31.9

The greatest height reached = 31.9 m (3 s.f.)

2. (i) Vertically: s = -50 $s = ut + \frac{1}{2}at^2$ g = -9.8 $-50 = 0 + \frac{1}{2}x - 9.8t^2$ u = 0 t = ? $t^2 = \frac{50}{4.9}$ t = 3.19

The time in the air is 3.19 seconds (3 s.f.)

Edexcel A level Maths Projectiles 1 Exercise solutions

(ii) Horizontally:
$$x = u$$

$$65 = u \sqrt{\frac{50}{4.9}}$$

$$u = 20.3$$

The initial speed is 20.3 ms-1.

$$s = ut + \frac{1}{2}at^2$$

$$-19.6 = 0 + \frac{1}{2} \times -9.8t^2$$

$$u = 0$$

$$t = ?$$

$$t = 2$$

It hits the ground after 2 seconds.

$$x = ut$$

Range = $49 \, \text{m}$.

When the ball hits ground:

Horizontally: $V_{\star} = 24.5$

$$V_{\chi} = 24.5$$

vertically:

$$v_{y} = 0 - 9.8 \times 2$$

$$V_{u} = -19.6$$

Speed =
$$\sqrt{24.5^2 + 19.6^2}$$
 = 31.4 ms⁻¹ (3 s.f.).

$$\tan \theta = \frac{19.6}{24.5}$$

$$\theta = 38.7^{\circ}$$

The velocity is 31.4 ms^{-2} at an angle 38.7 below the horizontal.

4. (i)

$$\frac{\sqrt{5}}{\theta}$$

$$\tan \theta = 2 \quad \sin \theta = \frac{2}{\sqrt{5}} \quad \cos \theta = \frac{1}{\sqrt{5}}$$

Horizontally:
$$u_x = 45\cos\theta = 45 \times \frac{1}{\sqrt{5}} = 9\sqrt{5} \text{ ms}^{-1}$$

Vertically:
$$u_y = 45 \sin \theta = 45 \times \frac{2}{\sqrt{5}} = 18\sqrt{5} \text{ ms}^{-1}$$

Edexcel A level Maths Projectiles 1 Exercise solutions

- (ii) Horizontally: $v_x = 9\sqrt{5}$ since horizontal velocity is constant vertically: $v_y = u_y + at$ $= 18\sqrt{5} 9.8t$
- (iii) Horizontally: $x = u_x t = 9\sqrt{5}t$ Vertically: $y = u_y t - \frac{1}{2}gt^2$ $= 18\sqrt{5}t - 4.9t^2$
- (iv) Time of flight is the time at which y = 0 Vertically: $0 = 18\sqrt{5}t 4.9t^2$ $0 = t(18\sqrt{5} 4.9t)$ $t = 0 \text{ or } t = \frac{18\sqrt{5}}{4.9}$

Time of flight = 8.21 seconds (3 s.f.)

Horizontally:
$$x = 9\sqrt{5}t$$

$$x = 9\sqrt{5} \times \frac{18\sqrt{5}}{4.9} = 165$$

The range is 165 m (3 s.f.)

- (v) At greatest height, $v_y = 0$ Vertically: $v_y^2 = u_y^2 - 2gh$ $0 = (18\sqrt{5})^2 - 2 \times 9.8h$ $h = \frac{1620}{19.6} = 82.7$
- 5. (i) $\frac{5}{\alpha}$ $\tan \alpha = \frac{4}{3} \quad \sin \alpha = \frac{4}{5} \quad \cos \alpha = \frac{2}{5}$

Horizontally: $u_x = 30\cos\alpha = 30 \times \frac{3}{5} = 18$ Vertically: $u_y = 30\sin\alpha = 30 \times \frac{4}{5} = 24$

(ii) At maximum height, $v_y = 0$ Vertically: $v_y = u_y + at$ 0 = 24 - 9.8t $t = \frac{24}{9.8}$

Edexcel A level Maths Projectiles 1 Exercise solutions

Time taken to reach highest point = 2.45 seconds (3 s.f.)

Vertically:
$$v_y^2 = u_y^2 - 2gh$$

 $0 = 24^2 - 2 \times 9.8h$
 $h = \frac{576}{19.6} = 29.4$

Maximum height = 29.4 m (3 s.f.).

(iii) Time of flight is twice the time taken to reach highest point Time of flight = $\frac{48}{9.8}$ = 4.90 seconds (3 s.f.)

Horizontally: $x = 18t = 18 \times \frac{48}{9.8} = 88.2$ The range is 88.2 m (3 s.f.)

6. Horizontally: x = 20t

When ball reaches net, x=12, so $12=20t \Rightarrow t=0.6$ Vertically when ball reaches net: $y=0-\frac{1}{2}gt^2=-4.9\times0.6^2=-1.764$

The ball has dropped by 1.764 m, so its height is 2.8 - 1.764 = 1.036The net is 1 m high, so the ball clears the net by 3.6 cm.