Edexcel A level Maths Moments

Section 1: The moment of a force
Solutions to Exercise level 3
1.

(i) Total moment $=m_{1} g(x-a)+m_{2} g(y-a)$
(ii) The minimum possible value of the magnitude of the moment is zero.

This occurs when $m_{1} g(x-a)+m_{2} g(y-a)=0$

$$
\begin{aligned}
& m_{1} x-m_{1} a+m_{2} y-m_{2} a=0 \\
& m_{1} x+m_{2} y=m_{1} a+m_{2} a \\
& a=\frac{m_{1} x+m_{2} y}{m_{1}+m_{2}}
\end{aligned}
$$

This expression can be written as $a=x+\frac{m_{2}(y-x)}{m_{1}+m_{2}}$
or as $a=y+\frac{m_{2}(x-y)}{m_{1}+m_{2}}$
If $y>x$, the first expression shows that $a>x$
and the second expression shows that since $x-y<0, a<y$
so $x<a<y$
Similarly if $y<x$, the first expression shows that $a<x$ and the second shows that $a>y$, so $y<a<x$.
so the point P lies between the two masses.
2.

Edexcel A level Maths Moments 1 Exercise solutions

Taking moments about $H: 110 g \times 2+60 g \times 5-R_{k} \times 4=0$

$$
520 \mathrm{~g}=4 R_{k}
$$

$$
R_{k}=130 \mathrm{~g}
$$

Resolving vertically:

$$
\begin{aligned}
& R_{H}+R_{K}=90 \mathrm{~g}+20 \mathrm{~g}+60 \mathrm{~g} \\
& R_{H}+130 \mathrm{~g}=170 \mathrm{~g} \\
& R_{H}=40 \mathrm{~g}
\end{aligned}
$$

(ii)

Taking moments about K: $20 \mathrm{~g} \times 2-R_{H} \times 4-60 \mathrm{~g} \times 1=0$

$$
\begin{aligned}
& -20 \mathrm{~g}=4 R_{H} \\
& R_{K}=-5 \mathrm{~g}
\end{aligned}
$$

it is not possible, as the reaction force cannot be negative.
(iii)

Taking moments about $H: 60 g \times 3-R_{k} \times 2-g 0 g(3-x)=0$

$$
-g 09+g 0 g x=2 R_{k}
$$

For $R_{k}>0$ (so the plank does not tip)
$-g \circ g+g \circ g x>0$
$x>1$

Taking moments about K: $60 g \times 1-20 g \times 2-g 0 g(5-x)+R_{H} \times 2=0$

$$
-4309+909 x=2 R_{H}
$$

For $R_{H}>0$ (so the plank does not tip)
$-4309+909 x>0$
$x>\frac{43}{9}=4 \frac{7}{9}$
so he must stand at least $4 \frac{7}{9}$ from end A.

Edexcel A level Maths Moments 1 Exercise solutions

3.

(i) Taking moments about the fence: $40 \times 0.5-R_{2} \times 0.3=0$

$$
R_{2}=\frac{200}{3}
$$

Resolving vertically: $R_{1}-\frac{200}{3}-40=0$

$$
R_{1}=\frac{320}{3}
$$

If the plank is just about to move, friction is limiting in both places:

$$
\begin{aligned}
& F_{1}=\mu_{1} R_{1}=\frac{320}{3} \mu_{1} \\
& F_{2}=\mu_{2} R_{2}=\frac{200}{3} \mu_{2}
\end{aligned}
$$

Resolving horizontally:

$$
\begin{aligned}
& P-F_{1}-F_{2}=0 \\
& P=\frac{1}{3}\left(320 \mu_{1}+200 \mu_{2}\right)
\end{aligned}
$$

(ii) If the plank has moved a distance x to the left:

Taking moments about the fence: $40(0.5-x)-R_{2} \times 0.3=0$ $0.3 R_{2}=20-40 x$
so R_{2} decreases and hence F_{2} decreases
Resolving vertically: $R_{1}=40+R_{2}$
Since R_{2} decreases, R_{1} decreases and hence F_{1} decreases
so the force required decreases.

