Edexcel A level Maths Hypothesis testing

Section 2: Testing for correlation

Exercise level 3 solutions

1. (i)

(ii) $\bar{x}=\frac{\sum x}{10}=107.6 \quad \bar{y}=\frac{\sum y}{10}=9.42$
(iii) $r=-0.9051$ from calculator.
(iv) From graph, intercept on y axis is about 10.3.

Gradient is about $-2.4 / 300=-0.008$
So approximate equation is $y=10.3-0.008 x$
(v) $x=200, y$ estimate is about 8.69 to $8.7^{\circ} \mathrm{C}$
$x=450$ is outside the range of the readings and so requires further data before any estimation is attempted.
2. (i) $r=0.6503$
(ii) $H_{0}: \rho=0$
$H_{1}: \rho>0$
So 1-tail test.
At 5\% significance level with $n=8$, critical value $=0.6215$
Test correlation coefficient, $r=0.6503>$ c.v.
so significant result. Reject H_{0}
There is sufficient evidence to suggest there is a positive correlation between \% additive and yield.

Edexcel A level Maths Hypothesis testing 2 Exercise solutions

(iii)

(iv) $\bar{x}=\frac{\sum x}{8}=4.25 \quad \bar{y}=\frac{\sum y}{8}=132.125$
(v) Several points to make:
is data random? x is a controlled variable as \% additive increased.
correlation and causation? There may be significant correlation in the range of the data recorded. But no inference of causation should be drawn from this and no inference about correlation outside the range of the data.
Linear? A curve would seem to fit the data better than a straight line, with the greatest y^{\prime} ield at $x \approx 4.5$. Increases in additive beyoud this do not appear effective.
3. (i) $Q=a W^{b}$
$\log _{10} a=\log _{10} a+\log _{10}\left(w^{b}\right)$
$\log _{10} a=\log _{10} a+b \log _{10} W$
(ii)

$\log _{10} W$	1.114	1.204	1.301	1.398	1.505	1.602	1.699	1.778
$\log _{10} Q$	1.851	1.602	1.699	1.505	1.380	1.491	1.398	1.204

Edexcel A level Maths Hypothesis testing 2 Exercise solutions

(iii) Mean of $\log _{10} W$ is $\bar{x}=\frac{\sum x}{8}=1.4052$, mean of $\log _{10} Q$ is $\bar{y}=\frac{\sum y}{8}=1.5164$ Gradient $=-0.75$ to $-0.8 .(-0.77)$
$\log _{10} Q-1.5164=-0.77\left(\log _{10} W-1.4052\right)$
$\log _{10} Q=2.63-0.77 \log _{10} W$
(iv) $\log _{10} a=2.63 \Rightarrow a \approx 430$
$b \approx-0.77$
(considerable variation in drawn lines gives a wide range for a and b)
4. $r=0.2347$ (from calculator/spreadsheet)
$H_{o}: \rho=0$
$H_{1}: \rho>0$
So 1-tail test.
From tables, for 5% significance level with $n=8$, critical value $=0.6215$
Test correlation coefficient, $r=0.2347<c . v$.
so result is not significant. Accept Ho
There is insufficient evidence to suggest there is a positive correlation between the masses of heart and liver in mice.

