Section 3: Connected objects

Solutions to Exercise level 2

1. (i)

(ii) Considering 8 kg mass:

$$
\begin{align*}
& 8 g-T_{1}=8 a \\
& T_{1}=8 g-8 a \tag{1}\\
& T_{2}-5 g=5 a \\
& T_{2}=5 g+5 a \tag{2}
\end{align*}
$$

Considering 5 kg mass:

Considering the 10 kg mass: $\quad T_{1}-T_{2}=10 a$
substituting (1) and (2) into (3): $8 g-8 a-(5 g+5 a)=10 a$

$$
39=23 a
$$

$$
a=\frac{3 \times 9.8}{23}=1.28
$$

The acceleration of the system is $1.28 \mathrm{~ms}^{-2}$ (3 s.f.)

Substítuting into (1): $\quad T_{1}=(8 \times 9.8)-8\left(\frac{3 \times 9.8}{23}\right)$

$$
=68.2
$$

Substituting into (2): $\quad T_{2}=(5 \times 9.8)+5\left(\frac{3 \times 9.8}{23}\right)$

$$
=55.4
$$

The tensions in the strings are 68.2 N and 55.4 N (3 s.f.)
2.

Edexcel AS Maths Force and Newton's laws 3 Exercise solns

considering particle on table:

$$
\begin{aligned}
& T=m a \\
& m g-T=m a \\
& m g=2 m a \\
& a=\frac{1}{2} g=4.9
\end{aligned}
$$

considering hanging particle:
$a=4.9, u=0, t=0.5$

$$
\begin{aligned}
s & =u t+\frac{1}{2} a t^{2} \\
& =0+\frac{1}{2} \times 4.9 \times 0.5^{2} \\
& =0.6125
\end{aligned}
$$

Distance travelled $=0.6125 \mathrm{~m}$

$$
\begin{aligned}
v & =u+a t \\
& =0+4.9 \times 0.5 \\
& =2.45
\end{aligned}
$$

speed $=2.45 \mathrm{~ms}^{-1}$.
3.

Considering the 0.5 kg particle: $0.5 \mathrm{~g}-\mathrm{T}=0.5 \mathrm{a}$
(1)
considering the 4 kg package: $T=4 a$
(2)

Substítuting (2) into (1): $0.5 g-4 a=0.5 a$

$$
0.5 \times 9.8=4.5 a
$$

$$
a=\frac{4.9}{4.5}=\frac{49}{45}
$$

For the motion of the package:

$$
\begin{aligned}
& u=0 \\
& s=2.5 \\
& a=\frac{49}{45} \\
& v=?
\end{aligned}
$$

$$
v^{2}=u^{2}+2 a s
$$

$$
=0+2 \times \frac{49}{45} \times 2.5
$$

$$
v=2.33
$$

The speed of the package as it reaches the shelf is $2.33 \mathrm{~ms}^{-1}$.

Edexcel AS Maths Force and Newton's laws 3 Exercise solns

4.

Considering the 0.5 kg particle: $0.5 \mathrm{~g}-\mathrm{T}=0.5 \mathrm{a}$
(1)
considering the 4 kg package: $T-2=4 a$
(2)

Substítuting (2) into (1): $\quad 0.59-(2+4 a)=0.5 a$

$$
0.5 \times 9.8-2-4 a=0.5 a
$$

$$
2.9=4.5 a
$$

$$
a=\frac{2.9}{4.5}=\frac{29}{45}
$$

For the motion of the package:

$$
\begin{aligned}
& u=0 \\
& s=2.5 \\
& a=\frac{29}{45} \\
& v=?
\end{aligned}
$$

$$
v^{2}=u^{2}+2 a s
$$

$$
=0+2 \times \frac{29}{45} \times 2.5
$$

$$
v=1.80
$$

The speed of the package as it reaches the shelf is $1.80 \mathrm{~ms}^{-1}$.
5.

(i) For caravan: $T-70=700 \times 0.4$

$$
\begin{aligned}
& T=70+280 \\
& T=350
\end{aligned}
$$

The tension in the tow-bar is 350 N
(ii) For car: $X-T-120=900 \times 0.4$

$$
\begin{aligned}
& x=350+120+360 \\
& x=830
\end{aligned}
$$

The force from the engine of the car $=830 \mathrm{~N}$.

Edexcel AS Maths Force and Newton's laws 3 Exercise solns

6.

For 700 g mass: $0.7 \mathrm{~g}-T=0.7 a$
For 500 g mass: $T-0.5 \mathrm{~g}=0.5 a$
Adding: $0.29=1.2 a$

$$
a=\frac{1}{6} 9
$$

The 500 g mass will rise with this acceleration until the 700 g mass hits the floor, after which the tension in the string will be zero and it will then move under gravity (continuing upwards until the velocity becomes zero and it begins to descend again. So we need to know its velocity at the point when the 700 g mass hits the floor.
For the motion until the 700 g mass reaches the floor:

$$
\begin{aligned}
& s=0.2 \\
& v^{2}=u^{2}+2 a s \\
& a=\frac{1}{6} g \\
& u=0 \\
& =0+2 \times \frac{1}{6} 9 \times 0.2 \\
& =\frac{1}{15} \mathrm{~g} \\
& v=\text { ? }
\end{aligned}
$$

For the motion of the 500 g mass under gravity, until it reaches greatest height:

$$
\begin{array}{ll}
u=\sqrt{\frac{1}{15} g} & v^{2}=u^{2}+2 a s \\
v=0 & 0=\frac{1}{15} g-29 s \\
s=? & s=\frac{1}{30}=0.033(3 \text { d.p. }) \\
a=-g &
\end{array}
$$

Height above ground $=0.2+0.2+0.033=0.433 \mathrm{~m}=43.3 \mathrm{~cm}$ (3 s.f.)

7

Edexcel AS Maths Force and Newton's laws 3 Exercise solns

(a) (i) For A: $p m g-T=\frac{1}{2} p m g$

$$
T=\frac{1}{2} p m g
$$

(ii) For $B: T-q m g=\frac{1}{2} q m g$

$$
T=\frac{3}{2} q m g
$$

$\frac{1}{2} p m g=\frac{3}{2} q m g$
$p=3 q$
(b) (i) In the result $p=3 q$, replace p by $p+q$ and replace q by 4 . $p+q=12$
(ii) $p+q=12$ and $p=3 q$
$3 q+q=12$
$4 q=12$
$q=3$
$p=g$

