Section 2: Newton's second law

Solutions to Exercise level 3

1. (i)
$$255 \times \frac{1}{5} = 51$$

(ii)
 $T + \frac{1}{5} = 51$
(ii)
 $T - mg = ma = \frac{1}{5}mg$
 $T - mg = ma = \frac{1}{5}mg$
 $T = \frac{6}{5}mg$
so the reading will be multiplied by $\frac{6}{5}$
 $255 \times \frac{6}{5} = 306$

2. (í) During descent, it decelerates from 2 ms $^{-1}$ to rest, over 1 metre.

$$v^2 = u^2 + 2as$$

 $0 = 2^2 + 2a \times 1$
 $a = -2$
Buoyancy force = 1000g N
Let resistance from flaps = R

(íí) Resistance of 800 N now acts downwards, mass is now 800 kg.

Edexcel AS Maths Force Newton's laws 2 Exercise solutions

1000g - 800g - 800 = 800a 1200 = 800a a = 1.5For upward travel, $v^2 = u^2 + 2as$ $= 0 + 2 \times 1.5 \times 1$ $v = \sqrt{3}$

$$v = u + at$$
$$\sqrt{3} = 0 + 1.5t$$
$$t = \frac{2\sqrt{3}}{3}$$

The time taken is 1.15 s, and its speed when it reaches the surface is 1.73 ms⁻¹.

3.
$$15.5 \text{ kmh}^{-1} = \frac{15500}{3600} = \frac{155}{36}$$

 $30.5 \text{ kmh}^{-1} = \frac{30500}{3600} = \frac{305}{36}$
 $58.5 \text{ kmh}^{-1} = \frac{58500}{3600} = \frac{585}{36}$
 $118.5 \text{ kmh}^{-1} = \frac{118500}{3600} = \frac{1185}{36}$

(i) For first stage, taking 5 seconds, v = u + at

$$\frac{155}{36} = 0 + 5a_1 \quad \Rightarrow a_1 = \frac{31}{36}$$

Newton's 2^{nd} law: $\frac{1}{2}P - R = \frac{31}{36}M$

For second stage, taking 10 seconds, v = u + at

$$\frac{305}{36} = \frac{155}{36} + 100a_2 \implies a_2 = \frac{15}{36}$$

Newton's 2^{nd} law: $\frac{1}{4}P - R = \frac{15}{36}M$

 $\Rightarrow \frac{1}{2}P - 2R = \frac{30}{36}M$ Subtracting: $R = \frac{1}{36}M = \frac{1}{36} \times 12000 = 333.3$ N

Edexcel AS Maths Force Newton's laws 2 Exercise solutions

(ii) From above, $\frac{1}{2}P - \frac{1}{36}m = \frac{31}{36}m \implies P = \frac{64}{36}m$ For 3^{rd} stage, Newton's 2^{rd} law: $\frac{1}{8}P - \frac{1}{36}m = ma_3$ $\frac{8}{56}m - \frac{1}{36}m = ma_3$ $a_3 = \frac{7}{36}$ V = u + at $\frac{585}{36} = \frac{305}{36} + \frac{7}{36}t \implies t = 40$ For 4th stage, Newton's 2^{rd} law: $\frac{1}{16}P - \frac{1}{36}m = ma_4$ $\frac{4}{36}m - \frac{1}{36}m = ma_4$ $a_4 = \frac{3}{36}$ V = u + at $\frac{1185}{36} = \frac{585}{36} + \frac{3}{36}t \implies t = 200$ so total time taken = 255 seconds.

(iii) It is unlikely to be constant in practice.