Edexcel AS Mathematics Force and Newton's laws "integral

Section 2: Newton's second law

Solutions to Exercise level 3

1. (i) $255 \times \frac{1}{5}=51$
(ií)

$T-m g=m a=\frac{1}{5} m g$
$T=\frac{6}{5} m g$
so the reading will be multiplied by $\frac{6}{5}$
$255 \times \frac{6}{5}=306$
2. (i) During descent, it decelerates from $2 \mathrm{~ms}^{-1}$ to rest, over 1 metre.
$v^{2}=u^{2}+2 a s$
$0=2^{2}+2 a \times 1$
$a=-2$
Buoyancy force $=1000 \mathrm{~g} \mathrm{~N}$
Let resistance from flaps $=R$

Newton's $2^{\text {nd }}$ law: $9009-R-10009=-2 \times 900$

$$
\begin{aligned}
& R=1800-1009 \\
& R=800 \mathrm{~N}
\end{aligned}
$$

(ii) Resistance of 800 N now acts downwards, mass is now 800 kg .

Edexcel AS Maths Force Newton's laws 2 Exercise solutions

$10009-800 g-800=800 a$
$1200=800 a$
$a=1.5$
For upward travel, $v^{2}=u^{2}+2 a s$

$$
=0+2 \times 1.5 \times 1
$$

$$
v=\sqrt{3}
$$

$v=u+a t$
$\sqrt{3}=0+1.5 t$
$t=\frac{2 \sqrt{3}}{3}$
The time taken is 1.15 s , and its speed when it reaches the surface is $1.73 \mathrm{~ms}^{-1}$.
3. $15.5 \mathrm{kmh}^{-1}=\frac{15500}{3600}=\frac{155}{36}$
$30.5 \mathrm{kmh}^{-1}=\frac{30500}{3600}=\frac{305}{36}$
$58.5 \mathrm{kmh}^{-1}=\frac{58500}{3600}=\frac{585}{36}$
$118.5 \mathrm{kmh}^{-1}=\frac{118500}{3600}=\frac{1185}{36}$
(i) For first stage, taking 5 seconds, $v=u+a t$

$$
\frac{155}{36}=0+5 a_{1} \Rightarrow a_{1}=\frac{31}{36}
$$

Newton's $2^{\text {nd }}$ law: $\frac{1}{2} P-R=\frac{31}{36} m$

For second stage, taking 10 seconds, $v=u+a t$

$$
\frac{305}{36}=\frac{155}{36}+10 a_{2} \Rightarrow a_{2}=\frac{15}{36}
$$

Newton's $2^{\text {nd }}$ law: $\frac{1}{4} P-R=\frac{15}{36} m$

$$
\Rightarrow \frac{1}{2} P-2 R=\frac{30}{36} m
$$

Subtracting: $R=\frac{1}{36} m=\frac{1}{36} \times 12000=333.3 \mathrm{~N}$

Edexcel AS Maths Force Newton's laws 2 Exercise solutions

(ii) From above, $\frac{1}{2} P-\frac{1}{36} m=\frac{31}{36} m \quad \Rightarrow P=\frac{64}{36} m$

For $3^{\text {rd }}$ stage, Newton's $2^{\text {nd }}$ law: $\frac{1}{8} P-\frac{1}{36} m=m a_{3}$

$$
\begin{aligned}
& \frac{8}{36} m-\frac{1}{36} m=m a_{3} \\
& a_{3}=\frac{7}{36}
\end{aligned}
$$

$v=u+a t$
$\frac{585}{36}=\frac{305}{36}+\frac{7}{36} t \Rightarrow t=40$
For 4th stage, Newton's $2^{\text {nd }}$ law: $\frac{1}{16} P-\frac{1}{36} m=m a_{4}$ $\frac{4}{36} m-\frac{1}{36} m=m a_{4}$
$a_{4}=\frac{3}{36}$
$v=u+a t$
$\frac{1185}{36}=\frac{585}{36}+\frac{3}{36} t \Rightarrow t=200$
so total time taken $=255$ seconds.
(iii) it is unlikely to be constant in practice.

