Edexcel AS Mathematics Force and Newton's lawsof "integral motion

Section 1: Force diagrams and equilibrium

Solutions to Exercise level 3

Normal reaction and friction forces act at the point of contact of each wheel
2. (i) Let the frictional force be F, assume for now that it acts in the direction of Q (so when the particle moves, it moves in the direction of P)

until it moves, $F+L t^{2}=L k t$

$$
F=L k t-L t^{2}=L t(k-t)
$$

F is at is maximum when $t=\frac{1}{k}$, so maximum F is $L \times \frac{1}{2} k \times \frac{1}{2} k=\frac{1}{4} k^{2} L$ If $k<2$, F never reaches its maximum value of L, so therefore it does not move in the direction of P. So it moves in the direction of Q (when $F=-L$ so the friction acts in the opposite direction)
(ii) If $k>2$, the maximum value of F is reached, so it moves in the direction of P.
(iii) If $k=2$, the maximum value of F is reached but it is not exceeded, so it still moves in the direction of Q

Edexcel AS Maths Force and Newton's laws 1 Exercise solns

3.

(i) $3 \times 10=4 \times 1+R$
$R=26$
The resistance to motion is 26 kN
(ii) car 1: since $26>10$ the force in the coupling must be a compression, as shown in the diagram
 and T_{1} must be 16 kN .
car 2: as shown, the force in the coupling must be
 compression of 17 kN
car 3: as shown, the force in the coupling must be
 a compression of 8 kN .
car 4: as shown, the force in the coupling must be
 a compression of 9 kN .
(iii) Resistance is proportional to speed, so for the whole train,
resistance $=k v$ for some constant k
Originally, speed $=250$ and resistance $=30$
$30=250 k \Rightarrow k=0.12$
With first car not working, total tractive force $=20$
so resistive force $=20$
$20=0.12 v \Rightarrow v=166.7 \mathrm{~km} \mathrm{~h}^{-1}$.
(iv) Let the tractive force on the last car be P

Total tractive force on train $=10+P$
At constant speed the resistance is equal to this, so $10+P=0.12 \mathrm{v}_{1}$
(where v_{1} is the new speed).
For the last car only, at speed of 250 , resistance $=1$,
so $1=250 k_{1} \Rightarrow k_{1}=0.004$
When the force in the coupling changes from compression to tension, it is momentarily zero, so the resistance is then equal to P.
so $P=0.004 v_{1} \Rightarrow 30 P=0.12 v_{1}$
Hence $10+P=30 P$

$$
\begin{aligned}
& 29 P=10 \\
& P=\frac{10}{29}=0.345
\end{aligned}
$$

so the tractive force is reduced to below 0.345

