

Section 3: The constant acceleration formulae

Solutions to Exercise level 3

1. (i)
$$s = 18, t = 1, a = -6, u = ?$$

 $s = ut + \frac{1}{2}at^{2}$
 $18 = u + \frac{1}{2} \times -6 \times 1$
 $18 = u - 3$
 $u = 21$

(ii)
$$s = 18, t = ?, a = -6, u = 21$$

 $s = ut + \frac{1}{2}at^{2}$
 $18 = 21t + \frac{1}{2} \times -6t^{2}$
 $3t^{2} - 21t + 18 = 0$
 $t^{2} - 7t + 6 = 0$
 $(t - 1)(t - 6) = 0$
so the other time is after 6 seconds.

(ííí) From (íí),
$$s = 21t - 3t^2$$

= $-3(t^2 - 7t)$
= $-3((t - \frac{7}{2})^2 - (\frac{7}{2})^2)$
= $-3(t - \frac{7}{2})^2 + \frac{147}{4}$

Maximum positive displacement is $\frac{147}{4}$ or $36\frac{3}{4}$ metres (when $t=\frac{7}{2}$)

- 2. (i) Taking downwards as positive: $s = h_1, u = 0, a = 10, t = t_1$ $s = ut + \frac{1}{2}at^2$ $h_1 = 5t_1^2$
 - (íí) Taking downwards as positive:

Edexcel AS Maths Kinematics 3 Exercise solutions

$$s = ut + \frac{1}{2}at^{2} \Rightarrow h_{1} - h_{2} = 5t_{o}^{2}$$

$$h_{1} = 5(t_{o} + t_{2})^{2}$$

$$\Rightarrow h_{2} = 5(t_{o} + t_{2})^{2} - 5t_{o}^{2}$$

$$\Rightarrow h_{2} = 5t_{o}^{2} + 10t_{o}t_{2} + 5t_{2}^{2} - 5t_{o}^{2}$$

$$\Rightarrow h_{2} = 10t_{o}t_{2} + 5t_{2}^{2} = 5t_{2}(2t_{o} + t_{2})$$

$$\Rightarrow \frac{h_{2}}{5t_{2}} = 2t_{o} + t_{2}$$

$$\Rightarrow t_{o} = \frac{h_{2}}{10t_{2}} - \frac{t_{2}}{2}$$

$$h_{1} = 5(t_{o} + t_{2})^{2}$$
$$= 5\left(\frac{h_{2}}{10t_{2}} - \frac{t_{2}}{2} + t_{2}\right)^{2}$$
$$= 5\left(\frac{h_{2}}{10t_{2}} + \frac{t_{2}}{2}\right)^{2}$$

3. (i)
$$100 \text{ mph} = \frac{100 \times 1600}{3600} = \frac{400}{9} \text{ ms}^{-1}$$

 $v = 0, a = ?, s = 1600, u = \frac{400}{9}$
 $v^2 = u^2 + 2as$
 $0 = \left(\frac{400}{9}\right)^2 + 2a \times 1600$
 $a = -\frac{50}{81}$

The maximum deceleration is $\frac{50}{81} \approx 0.617$ ms⁻².

(ii)
$$125 \text{ mph} = \frac{125 \times 1600}{3600} = \frac{500}{9} \text{ ms}^{-1}$$

 $v = 0, a_2 = ?, s = 1600, u = \frac{500}{9}$
 $v^2 = u^2 + 2as$

$$O = \left(\frac{500}{9}\right)^2 + 2a_2 \times 1600$$
$$a_2 = -\frac{625}{648}$$

The deceleration is more than $\frac{625}{648} \approx 0.964$ ms⁻².

4. (í)

$$100 \quad d \quad train$$

$$120$$

$$100 \text{ kmh}^{-1} = \frac{100000}{3600} = \frac{250}{9} \text{ ms}^{-1}$$

$$s = d + 100, u = \frac{250}{9}, v = 0, t = 30$$

$$s = \frac{1}{2}(u + v)t$$

$$d + 100 = \frac{1}{2}\left(\frac{250}{9} + 0\right) \times 30$$

$$d + 100 = \frac{1250}{3}$$

$$d = \frac{950}{3} = 316\frac{2}{3}$$
The driver must start to brake 317 metres (3 s.f.) from the nearer end of the platform.

(ii) Maximum distance to travel = $d' + 120 = 436\frac{2}{3} = \frac{1310}{3}$

$$s = \frac{1310}{3}, u = \frac{250}{9}, v = 0, a = ?$$

$$v^{2} = u^{2} + 2as$$

$$0 = \left(\frac{250}{9}\right)^{2} + 2a \times \frac{1310}{3}$$

$$a = -0.8835...$$

so the deceleration must be at least 0.884 ms⁻² (3 s.f.)

(iii) For the original acceleration: $u = \frac{250}{9}, v = 0, t = 30, a = ?$

$$v = u + at$$
$$0 = \frac{250}{9} + 30t$$
$$t = -\frac{25}{27}$$

For this new situation, $u = ?, v = 0, s = \frac{1310}{3}, a = -\frac{25}{27}$ $v^2 = u^2 + 2as$

$$0 = u^{2} + 2 \times \frac{1310}{3} \times -\frac{25}{27}$$
$$u = \sqrt{\frac{65500}{81}}$$
$$u = 28.4 \text{ ms}^{-1} (3 \text{ s.f.})$$

Edexcel AS Maths Kinematics 3 Exercise solutions

(iv)
$$u = \sqrt{\frac{65500}{81}}, v = 0, s = \frac{1250}{3}, a = ?$$

 $v^2 = u^2 + 2as$
 $0 = \frac{65500}{81} + 2a \times \frac{1250}{3}$
 $a = -0.970 \text{ ms}^{-2}$ (3 s.f.)
Deceleration in this case is -0.970 ms^{-2} (3 s.f.)

5. (i)
$$u = u_o, v = 0, a = -g, s = t$$

 $v = u + at$
 $o = u_o - gt$
 $t = \frac{u_o}{g}$

Time taken to maximum height $=\frac{u_o}{g}$ seconds.

- (ii) Since the acceleration and distance are the same, it takes the same amount of time to come down as to go up, so time $=\frac{2u_o}{g}$ seconds.
- (iii) Let initial speed of second stone be u_2 . Time to maximum height of second stone (measured from time that first stone reaches maximum height) = $\frac{u_2}{g}$ Let height of stones when they collide be h For first stone, $s = h, a = -g, u = u_0, t = \frac{u_0}{g} + \frac{u_2}{g}$ $s = ut + \frac{1}{2}at^2$ $h = u_0 \left(\frac{u_0}{g} + \frac{u_2}{g}\right) - \frac{g}{2} \left(\frac{u_0}{g} + \frac{u_2}{g}\right)^2$ For second stone, $s = h, a = -g, u = u_2, t = \frac{u_2}{g}$ $s = ut + \frac{1}{2}at^2$ $h = u_2 \left(\frac{u_2}{g}\right) - \frac{g}{2} \left(\frac{u_2}{g}\right)^2 = \frac{u_2^2}{g} - \frac{u_2^2}{2g} = \frac{u_2^2}{2g}$

Edexcel AS Maths Kinematics 3 Exercise solutions

So
$$u_o \left(\frac{u_o}{g} + \frac{u_2}{g}\right) - \frac{g}{2} \left(\frac{u_o}{g} + \frac{u_2}{g}\right)^2 = \frac{u_2^2}{2g}$$

 $2u_o(u_o + u_2) - (u_o + u_2)^2 = u_2^2$
 $2u_o^2 + 2u_ou_2 - u_o^2 - 2u_ou_2 - u_2^2 = u_2^2$
 $u_o^2 = 2u_2^2$
 $u_2 = \frac{1}{\sqrt{2}}u_o$

(iv) The answer to (iii) would be unchanged as this does not depend on the value of g.