Section 3: The constant acceleration formulae

Solutions to Exercise level 2

1. $15 \mathrm{kmh}^{-1}=\frac{15000}{3600} \mathrm{~ms}^{-1}=\frac{25}{6} \mathrm{~ms}^{-1}$
$30 \mathrm{kmh}^{-1}=\frac{30000}{3600} \mathrm{~ms}^{-1}=\frac{25}{3} \mathrm{~ms}^{-1}$
$s=1300 \quad v^{2}=u^{2}+2 a s$
$u=\frac{25}{6} \quad\left(\frac{25}{3}\right)^{2}=\left(\frac{25}{6}\right)^{2}+2 k \times 1300$
$\begin{array}{ll}v=\frac{25}{3} \\ a=k & \frac{625}{9}=\frac{625}{36}+2600 k\end{array}$

$$
\begin{aligned}
& \frac{1875}{36}=2600 k \\
& k=\frac{25}{1248}
\end{aligned}
$$

2. $108 \mathrm{kmh}^{-1}=\frac{108000}{3600} \mathrm{~ms}^{-1}=30 \mathrm{~ms}^{-1}$
$u=0$
$v^{2}=u^{2}+2 a s$
$v=30$
$30^{2}=0^{2}+2 a \times 25$
$s=25$
$900=50 a$
$a=$?
$a=18$

The acceleration is $18 \mathrm{~ms}^{-2}$.

Assumption: that the acceleration is constant.
3. While accelerating:

$$
\begin{array}{ll}
u=0 & v=u+a t \\
t=20 & 30=0+20 a \\
v=30 & a=1.5 \\
a=? &
\end{array}
$$

The acceleration in the first 20 seconds is $1.5 \mathrm{~ms}^{-2}$

In the first 20 seconds

$$
\begin{array}{ll}
u=0 & s=\frac{1}{2}(u+v) t \\
t=20 & =\frac{1}{2}(0+30) \times 20 \\
v=30 & =300 \\
s=? &
\end{array}
$$

Edexcel AS Maths Kinematics 3 Exercise solutions

In the minute at constant speed of $30 \mathrm{~ms}^{-1}$, distance $=30 \times 60=1800 \mathrm{~m}$ Total distance travelled $=2100 \mathrm{~m}$.

Assumption: that the acceleration is constant during the first 20 seconds.
4. $70 \mathrm{kmh}^{-1}=\frac{70000}{3600} \mathrm{~ms}^{-1}=\frac{175}{9} \mathrm{~ms}^{-1}$
$u=\frac{175}{9} \quad v^{2}=u^{2}+2 a s$
$\begin{array}{ll}v=0^{9} \\ a=-5\end{array} \quad 0=\left(\frac{175}{9}\right)^{2}+2 \times-5 s$
$s=37.8$ ($3 \mathrm{~s} . f$.)
$s=$?
Yes, she comes to a stop 22.2 m before the accident.
5. $u=20 \quad v^{2}=u^{2}+2 a s$
$v=0 \quad 0=20^{2}+2 a \times 30$
$s=30 \quad 60 a=-400$
$a=? \quad a=-6.67$
This is a deceleration of $6.67 \mathrm{~ms}^{-2}$.
$u=20 \quad s=\frac{1}{2}(u+v) t$
$v=0 \quad 30=\frac{1}{2}(0+20) t$
$s=30 \quad 30=10 t$
$t=? \quad t=3$
it takes 3 seconds to come to rest.

$$
\text { 6. } \begin{array}{ll}
u=2 & v=u+a t \\
v=16 & 16=2+10 a \\
t=10 & 14=10 a \\
a=? & a=1.4
\end{array}
$$

The acceleration is $1.4 \mathrm{~ms}^{-2}$.
$u=2$
$s=\frac{1}{2}(u+v) t$
$v=16$
$=\frac{1}{2}(2+16) \times 10$
$t=10$
$=90$
$s=$?
it travels 90 m .

Edexcel AS Maths Kinematics 3 Exercise solutions

7. Taking positive to be upwards:

$$
\begin{array}{ll}
u=6 & v=u+a t \\
a=-9.8 & =6-9.8 \times 2 \\
t=2 & =-13.6 \\
v=? &
\end{array}
$$

The stone hits the water at a speed of $13.6 \mathrm{~ms}^{-1}$.

$$
\begin{array}{ll}
u=6 & s=u t+\frac{1}{2} a t^{2} \\
a=-9.8 & =6 \times 2+\frac{1}{2} \times-9.8 \times 2^{2} \\
t=2 & =-7.6 \\
s=? &
\end{array}
$$

The initial height of the stone is 7.6 m .
8. Taking upwards to be posítive:

$$
\begin{array}{ll}
u=25 & s=u t+\frac{1}{2} a t^{2} \\
s=3 & 3=25 t+\frac{1}{2} \times-9.8 t^{2} \\
a=-9.8 & 4.9 t^{2}-25 t+3=0 \\
t=? &
\end{array}
$$

using the quadratic formula:

$$
\begin{aligned}
& t=\frac{25 \pm \sqrt{25^{2}-4 \times 4.9 \times 3}}{2 \times 4.9} \\
& t=0.123 \text { or } 4.979
\end{aligned}
$$

The ball is above 3 metres between these two times, so the length of time for which the ball is above 3 m is $4.979-0.123=4.856$ seconds.
9. $144 \mathrm{kmh}^{-1}=\frac{144000}{60 \times 60}=40 \mathrm{~ms}^{-1}$

Total distance $=$ area under graph

$$
\begin{aligned}
& =\left(\frac{1}{2} \times 180 \times 40\right)+(600 \times 40)+\left(\frac{1}{2} \times 120 \times 40\right) \\
& =30000 \mathrm{~m}
\end{aligned}
$$

Distance between A and $B=30 \mathrm{~km}$.

Edexcel AS Maths Kinematics 3 Exercise solutions

10. In the first two seconds:

$$
\begin{array}{ll}
t=2 & s=u t+\frac{1}{2} a t^{2} \\
s=10 & 10=2 u+\frac{1}{2} a \times 2^{2} \\
u=? & 5=u+a \\
a=? &
\end{array}
$$

In the first four seconds:

$$
\begin{array}{ll}
t=4 & s=u t+\frac{1}{2} a t^{2} \\
s=32 & 32=4 u+\frac{1}{2} a \times 4^{2} \\
u=? & 32=4 u+8 a \\
a=? & 8=u+2 a
\end{array}
$$

$(2)-(1): 3=a$

$$
u=2
$$

In the first six seconds:

$$
\begin{array}{ll}
t=6 & s=u t+\frac{1}{2} a t^{2} \\
u=2 & =2 \times 6+\frac{1}{2} \times 3 \times 6^{2} \\
a=3 & =66 \\
s=? &
\end{array}
$$

The distance moved in the last 2 seconds is $66-32=34$ metres.
11. (i) For first 2 secouds:

$$
\begin{array}{ll}
t=2 & s=u t+\frac{1}{2} a t^{2} \\
s=30 & 30=2 u+\frac{1}{2} a \times 2^{2} \\
u=? & 30=2 u+2 a \\
a=? & 15=u+a \tag{1}
\end{array}
$$

For first 6 secouds:

$$
\begin{aligned}
& t=6 \\
& s=60 \\
& u=? \\
& a=?
\end{aligned}
$$

$$
s=u t+\frac{1}{2} a t^{2}
$$

$$
60=6 u+\frac{1}{2} a \times 6^{2}
$$

$$
60=6 u+18 a
$$

$$
\begin{equation*}
10=u+3 a \tag{2}
\end{equation*}
$$

substítuting (1) into (2):

$$
\begin{aligned}
& 10=u+3(15-u) \\
& 10=u+45-3 u \\
& 2 u=35 \\
& u=17.5
\end{aligned}
$$

The initial velocity is $17.5 \mathrm{~ms}^{-1}$.
(ii) From (1), $a=15-u=15-17.5=-2.5$

Edexcel AS Maths Kinematics 3 Exercise solutions

$$
\text { Deceleration }=-2.5 \mathrm{~ms}^{-2} \text {. }
$$

(iii) For the complete time to come to rest:

$$
\begin{array}{ll}
u=17.5 & v=u+a t \\
a=-2.5 & 0=17.5-2.5 t \\
v=0 & t=7 \\
t=? &
\end{array}
$$

The total time is 7 seconds.
12.

During the acceleration: $3=\frac{V}{t_{1}} \Rightarrow t_{1}=\frac{V}{3}$
During the deceleration:

$$
1.5=\frac{v}{t_{2}} \Rightarrow t_{2}=\frac{2 v}{3}
$$

Total time $=60$ seconds: $\frac{V}{3}+\frac{2 V}{3}+T=60$

$$
V+T=60
$$

Distance travelled during acceleration $=\frac{1}{2} V t_{1}=\frac{1}{2} V \times \frac{1}{3} V=\frac{1}{6} V^{2}$
Distance travelled during constant speed $=V T$
Distance travelled during deceleration $=\frac{1}{2} V t_{2}=\frac{1}{2} V \times \frac{2}{3} V=\frac{1}{3} V^{2}$
Total distance $=1000 \mathrm{~m}: \frac{1}{6} V^{2}+V T+\frac{1}{3} V^{2}=1000$

$$
\begin{aligned}
& \frac{1}{2} v^{2}+V(60-v)=1000 \\
& \frac{1}{2} v^{2}+60 v-v^{2}=1000 \\
& \frac{1}{2} v^{2}-60 v+1000=0 \\
& v^{2}-120 v+2000=0 \\
& (v-100)(v-20)=0 \\
& v=100 \text { or } v=20
\end{aligned}
$$

since $V+T=60, V$ must be less than 60 , so $V=20 \mathrm{~ms}^{-1}$.

Edexcel AS Maths Kinematics 3 Exercise solutions

13. Taking upwards as posítive:

For first ball:

$$
\begin{aligned}
& u=25 \\
& a=-9.8 \\
& t=2 \\
& s=?
\end{aligned}
$$

$$
s=u t+\frac{1}{2} a t^{2}
$$

$$
=25 \times 2+\frac{1}{2} \times-9.8 \times 2^{2}
$$

$$
=30.4
$$

For second ball:

$$
\begin{array}{ll}
u=-25 & s=u t+\frac{1}{2} a t^{2} \\
a=-9.8 & =-25 \times 2+\frac{1}{2} \times-9.8 \times 2^{2} \\
t=2 & =-69.6 \\
s=? &
\end{array}
$$

Distance between balls $=30.4+69.6=100 \mathrm{~m}$.
14.

For acceleration: $\frac{1}{2} v t_{1}=300 \Rightarrow t_{1}=\frac{600}{v}$
For constant speed: $v t_{2}=1250 \Rightarrow t_{2}=\frac{1250}{v}$
$t_{3}=\frac{2}{3} t_{1}=\frac{400}{v}$
Total time $=3$ minutes $=180$ seconds

$$
\begin{aligned}
& \frac{600}{v}+\frac{1250}{v}+\frac{400}{v}=180 \\
& \frac{2250}{v}=180 \\
& v=12.5
\end{aligned}
$$

$t_{1}=\frac{600}{12.5}=48$
$t_{2}=\frac{1250}{12.5}=100$
$t_{3}=\frac{400}{12.5}=32$
Distance during deceleration $=\frac{1}{2} V t_{3}=\frac{1}{2} \times 12.5 \times 32=200$
Total distance $A B=300+1250+200=1750 \mathrm{~m}$.

Edexcel AS Maths Kinematics 3 Exercise solutions

15. (i) $u=30$

$$
\begin{aligned}
& a=-9.8 \\
& s=25 \\
& t=?
\end{aligned}
$$

$$
\begin{aligned}
& s=u t+\frac{1}{2} a t^{2} \\
& 25=30 t-4.9 t^{2} \\
& 4.9 t^{2}-30 t+25=0 \\
& t=\frac{30 \pm \sqrt{30^{2}-4 \times 4.9 \times 25}}{2 \times 4.9} \\
& t=0.9950 \text { or } 5.1274
\end{aligned}
$$

Time it is above tower is $5.1274-0.9950=4.132 \mathrm{~s}$
(ii) Let h be the height above the top of the tower when they are at the same height:

$$
\begin{aligned}
\text { For } P_{1}: u & =30 & & s=u t+\frac{1}{2} a t^{2} \\
a & =-9.8 & & 25+h=30 t-4.9 t^{2} \\
s & =25+h & & h=30 t-4.9 t^{2}-25 \\
t & =? & & s=u t+\frac{1}{2} a t^{2} \\
\text { For } P_{2}: u & =10 & & s=10 t-4.9 t^{2} \\
a & =-9.8 & & h=10 \\
s & =h & & \\
t & =? & &
\end{aligned}
$$

So $30 t-4.9 t^{2}-25=10 t-4.9 t^{2}$

$$
20 t=25
$$

$$
t=1.25
$$

For $P_{1}: v=u+a t$

$$
\begin{aligned}
& =30-9.8 \times 1.25 \\
& =17.75
\end{aligned}
$$

For $P_{2}: v=u+a t$

$$
\begin{aligned}
& =10-9.8 \times 1.25 \\
& =-2.25
\end{aligned}
$$

So the velocity of P_{1} is $17.75 \mathrm{~ms}^{-1}$ and the velocity of P_{2} is $-2.25 \mathrm{~ms}^{-1}$.
(iii) When P_{1} is level with $P_{2}, t=1.25$, and P_{1} is moving upwards with speed $17.75 \mathrm{~ms}^{-1}$, and P_{2} is moving downwards.
At the point where P_{1} stops moving upwards, measuring from the time when they are level:

$$
\begin{array}{ll}
u=17.75 & v=u+a t \\
a=-9.8 & 0=17.75-9.8 t \\
v=0 & t=1.81 \\
t=? &
\end{array}
$$

So the time for which P_{1} is higher than P_{2} and is moving upwards is 1.81 s .

