

Section 3: The constant acceleration formulae

Solutions to Exercise level 2

1.
$$15 \text{ kmh}^{-1} = \frac{15000}{3600} \text{ ms}^{-1} = \frac{25}{6} \text{ ms}^{-1}$$

 $30 \text{ kmh}^{-1} = \frac{30000}{3600} \text{ ms}^{-1} = \frac{25}{3} \text{ ms}^{-1}$

$$s = 1300 \qquad v^{2} = u^{2} + 2As$$

$$u = \frac{25}{6} \qquad \left(\frac{25}{3}\right)^{2} = \left(\frac{25}{6}\right)^{2} + 2k \times 1300$$

$$v = \frac{25}{3} \qquad \frac{625}{9} = \frac{625}{36} + 2600k$$

$$A = k \qquad \frac{1875}{36} = 2600k$$

$$k = \frac{25}{1248}$$

2.
$$108 \text{ kmh}^{-1} = \frac{108000}{3600} \text{ ms}^{-1} = 30 \text{ ms}^{-1}$$

 $u = 0$ $v^2 = u^2 + 2as$
 $v = 30$ $30^2 = 0^2 + 2a \times 25$
 $s = 25$ $900 = 50a$
 $a = ?$ $a = 18$
The acceleration is 18 ms^{-2}.

Assumption: that the acceleration is constant.

з. While accelerating:

u = 0	v = u + at
t = 20	30 = 0 + 20a
V = 30	a = 1.5
a = ?	

The acceleration in the first 20 seconds is 1.5 $\rm ms^{-2}$

In the first 20 seconds

 $u = 0 \qquad S = \frac{1}{2}(u + v)t$ $t = 20 \qquad = \frac{1}{2}(0 + 30) \times 20$ $v = 30 \qquad = 300$ S = ?

In the minute at constant speed of 30 ms⁻¹, distance $= 30 \times 60 = 1800$ m Total distance travelled = 2100 m.

Assumption: that the acceleration is constant during the first 20 seconds.

4. $70 \text{ kmh}^{-1} = \frac{70000}{3600} \text{ ms}^{-1} = \frac{175}{9} \text{ ms}^{-1}$ $u = \frac{175}{9}$ $v^2 = u^2 + 2as$ v = 0 $0 = \left(\frac{175}{9}\right)^2 + 2 \times -5s$ a = -5 s = 37.8 (3 s.f.)

Yes, she comes to a stop 22.2 m before the accident.

5. u = 20 $v^2 = u^2 + 2as$ v = 0 $0 = 20^2 + 2a \times 30$ s = 30 60a = -400 a = ? a = -6.67This is a deceleration of 6.67 ms⁻².

$$u = 20$$
 $s = \frac{1}{2}(u+v)t$ $v = 0$ $30 = \frac{1}{2}(0+20)t$ $s = 30$ $30 = 10t$ $t = ?$ $t = 3$ It takes 3 seconds to come to rest.

6. u = 2 v = u + at v = 16 16 = 2 + 10a t = 10 14 = 10a a = ? a = 1.4The acceleration is 1.4 ms⁻². u = 2 $s = \frac{1}{2}(u + v)t$

$$v = 16$$
 $= \frac{1}{2}(2+16) \times 10$
 $t = 10$ $= 90$
 $s = ?$
It travels 90 m.

7. Taking positive to be upwards:

u = 6 v = u + at a = -9.8 $= 6 - 9.8 \times 2$ t = 2 = -13.6v = ?

The stone hits the water at a speed of 13.6 ms⁻¹.

 $u = 6 \qquad s = ut + \frac{1}{2}at^{2}$ $a = -9.8 \qquad = 6 \times 2 + \frac{1}{2} \times -9.8 \times 2^{2}$ $t = 2 \qquad = -7.6$ s = ?

The initial height of the stone is 7.6 m.

8. Taking upwards to be positive:

$$u = 25 \qquad s = ut + \frac{1}{2}at^{2}$$

$$s = 3 \qquad 3 = 25t + \frac{1}{2} \times -9.8t^{2}$$

$$a = -9.8 \qquad 4.9t^{2} - 25t + 3 = 0$$

$$t = 2$$

Using the quadratic formula:

$$t = \frac{25 \pm \sqrt{25^2 - 4 \times 4.9 \times 3}}{2 \times 4.9}$$

t = 0.123 or 4.979

The ball is above 3 metres between these two times, so the length of time for which the ball is above 3 m is 4.979 - 0.123 = 4.856 seconds.

Total dístance = area under graph

$$= \left(\frac{1}{2} \times 180 \times 40\right) + \left(600 \times 40\right) + \left(\frac{1}{2} \times 120 \times 40\right)$$

= 30000 m Dístance between A and B = 30 km.

10. In the first two seconds:

t = 2	$S = \mu t + \frac{1}{2} a t^2$	2
s = 10	$10=2u+\frac{1}{2}u$	2×2^2
<i>μ</i> = ?	5 = u + a	(1)
a = ?		

In the first four seconds:

t = 4	$s = \mu t + \frac{1}{2} a t^2$	
<i>s</i> = 32	$32 = 4u + \frac{1}{2}a \times$	4 ²
u = ?	32 = 4 <i>u</i> + 8 <i>a</i>	
a = ?	g = u + 2a	(2)

$$(2) - (1) : 3 = a$$

 $u = 2$

In the first six seconds:

 $t = 6 \qquad s = ut + \frac{1}{2}at^{2}$ $u = 2 \qquad = 2 \times 6 + \frac{1}{2} \times 3 \times 6^{2}$ $a = 3 \qquad = 66$ s = ?

The distance moved in the last 2 seconds is 66 - 32 = 34 metres.

11. (í) For first 2 seconds:

 $t=2 \qquad s=\mu t+\frac{1}{2}at^2$ $S = 30 \qquad \qquad 30 = 2\mu + \frac{1}{2} \rho \times 2^2$ u = ?30 = 2u + 2aa = ? $15 = u + a \qquad (1)$ For first 6 seconds: $t = 6 \qquad \qquad s = \mu t + \frac{1}{2} a t^2$ $S = 60 \qquad \qquad 60 = 6\mu + \frac{1}{2}\mu \times 6^2$ u = ?60 = 6u + 18aa = ? 10 = u + 3a (2) Substituting (1) into (2): 10 = u + 3(15 - u)10 = u + 45 - 3u2u = 35u = 17.5The initial velocity is 17.5 ms-1.

(ú) From (1), a = 15 - u = 15 - 17.5 = -2.5

Deceleration = -2.5 ms^{-2} .

(iii) For the complete time to come to rest:

$$u = 17.5 \qquad v = u + at$$

$$a = -2.5 \qquad 0 = 17.5 - 2.5t$$

$$v = 0 \qquad t = 7$$

$$t = ?$$
The total time is 7 seconds.

12.

During the acceleration:
$$3 = \frac{V}{t_1} \implies t_1 = \frac{V}{3}$$

During the deceleration: $1.5 = \frac{V}{t_2} \implies t_2 = \frac{2V}{3}$
Total time = 60 seconds: $\frac{V}{3} + \frac{2V}{3} + T = 60$
 $V + T = 60$

Distance travelled during acceleration $=\frac{1}{2}Vt_1 = \frac{1}{2}V \times \frac{1}{3}V = \frac{1}{6}V^2$ Distance travelled during constant speed =VTDistance travelled during deceleration $=\frac{1}{2}Vt_2 = \frac{1}{2}V \times \frac{2}{3}V = \frac{1}{3}V^2$ Total distance = 1000 m: $\frac{1}{6}V^2 + VT + \frac{1}{3}V^2 = 1000$

$$\frac{1}{2}V^{2} + V(60 - V) = 1000$$

$$\frac{1}{2}V^{2} + 60V - V^{2} = 1000$$

$$\frac{1}{2}V^{2} - 60V + 1000 = 0$$

$$V^{2} - 120V + 2000 = 0$$

$$(V - 100)(V - 20) = 0$$

$$V = 100 \text{ or } V = 20$$
Since $V + T = 60$, V must be less than 60 , so $V = 20 \text{ ms}^{-1}$.

13. Taking upwards as positive:

For first ball:

 $s = \mu t + \frac{1}{2} \alpha t^2$ u = 25a = -9.8 $= 25 \times 2 + \frac{1}{2} \times -9.8 \times 2^{2}$ t = 2 = 30.4 s = ? For second ball: $s = \mu t + \frac{1}{2} \alpha t^2$ u = -25 a = -9.8 $=-25\times2+\frac{1}{2}\times-9.8\times2^{2}$ t = 2 =-69.6 s = ? Dístance between balls = 30.4 + 69.6 = 100 m.

15. (i)
$$u = 30$$

 $a = -9.8$
 $s = 25$
 $t = ?$
 $s = 0.950$
 $s = 0.1274$

Time it is above tower is 5.1274 - 0.9950 = 4.132 s

(ii) Let h be the height above the top of the tower when they are at the same height:

For P₁:
$$u = 30$$
 $s = ut + \frac{1}{2}at^{2}$
 $a = -9.8$ $25 + h = 30t - 4.9t^{2}$
 $s = 25 + h$ $h = 30t - 4.9t^{2} - 25$
 $t = ?$
For P₂: $u = 10$ $s = ut + \frac{1}{2}at^{2}$
 $a = -9.8$ $h = 10t - 4.9t^{2}$
 $s = h$
 $t = ?$
So $30t - 4.9t^{2} - 25 = 10t - 4.9t^{2}$
 $20t = 25$
 $t = 1.25$
For P₁: $v = u + at$
 $= 30 - 9.8 \times 1.25$
 $= 17.75$
For P₂: $v = u + at$
 $= 10 - 9.8 \times 1.25$
 $= -2.25$
So the velocity of P₁ is 17.75 ms⁻¹ and the velocity of P₂ is -2.25 ms⁻¹.

(iii) When P_1 is level with P_2 , t = 1.25, and P_1 is moving upwards with speed 17.75 ms⁻¹, and P_2 is moving downwards.

At the point where P_1 stops moving upwards, measuring from the time when they are level:

$$u = 17.75$$
 $v = u + at$
 $a = -9.8$ $0 = 17.75 - 9.8t$
 $v = 0$ $t = 1.81$
 $t = ?$

So the time for which P_1 is higher than P_2 and is moving upwards is 1.81 s.