

Section 3: The constant acceleration formulae

Solutions to Exercise level 1

1. (i)
$$v = u + at$$

 $= 5 + (3 \times 2)$
 $= 11$
(ii) $v = u + at$
 $= 4 + (-2 \times 3)$
 $= -2$
(iii) $v^{2} = u^{2} + 2as$
 $10^{2} = 4^{2} + 2 \times 6s$
 $100 = 16 + 12s$
 $84 = 12s$
 $s = 7$
(iv) $s = ut + \frac{1}{2}at^{2}$

(iv)
$$s = ut + \frac{1}{2}at^{2}$$

= $15 \times 3 + \frac{1}{2} \times -5 \times 3^{2}$
= $45 - 22.5$
= 22.5

2. (i)
$$v^{2} = u^{2} + 2as$$

 $1^{2} = 6^{2} + 2a \times 4$
 $1 = 36 + 8a$
 $8a = -35$
 $a = -4.375$

(ii)
$$s = ut + \frac{1}{2}at^{2}$$

 $12 = 3 \times 4 + \frac{1}{2}a \times 4^{2}$
 $12 = 12 + 8a$
 $a = 0$

(iii)
$$v^2 = u^2 + 2as$$

 $0^2 = u^2 + 2 \times 4 \times -12$
 $u^2 = 96$
 $u = 9.80$

Edexcel AS Maths Kinematics 3 Exercise solutions

$$(iv) \quad s = ut + \frac{1}{2}at^{2}$$
$$10 = 2u + \frac{1}{2} \times -4 \times 2^{2}$$
$$10 = 2u - 8$$
$$2u = 18$$
$$u = 9$$

3. (i)
$$V = u + as$$

 $V = 5 + 2 \times 3$
 $V = 11$
 $s = ut + \frac{1}{2}at^{2}$
 $s = 5 \times 3 + \frac{1}{2} \times 2 \times 3^{2}$
 $s = 24$

(ii)
$$s = vt - \frac{1}{2}at^{2}$$

 $-64 = -18 \times 8 - \frac{1}{2}a \times 8^{2}$
 $64 = 144 + 32a$
 $32a = -80$
 $a = -2.5$
 $s = \frac{1}{2}(u + v)t$
 $-64 = \frac{1}{2} \times 8(u - 18)$
 $-16 = u - 18$
 $u = 2$

4. (i)
$$v^2 = u^2 + 2as$$

(ii) $v = u + at$
(iii) $s = \frac{1}{2}(u + v)t$
(iv) $s = ut + \frac{1}{2}at^2$
(v) $s = \frac{1}{2}(u + v)t$

5. u = 0 $S = \frac{1}{2}(u+v)t$ v = 17 $= \frac{1}{2}(0+17) \times 30$ t = 30 = 255 S = ?The distance travelled is 255 m.

Edexcel AS Maths Kinematics 3 Exercise solutions

6. (i) 80 km h⁻¹ =
$$\frac{80 \times 1000}{3600} = \frac{200}{9}$$
 m s⁻¹
 $u = 0$ $v = u + at$
 $v = \frac{200}{9}$ $\frac{200}{9} = 0 + 10a$
 $a = ?$ $a = \frac{20}{9} = 2.22$ (3 s.f.)
The appeleration is 2.22 m s⁻² (2 s.f.)

The acceleration is 2.22 m s⁻² (3 s.t.)

(ii)
$$s = \frac{1}{2}(u+v)t$$

= $\frac{1}{2}\left(0+\frac{200}{9}\right) \times 10 = \frac{1000}{9} = 111$ (3 s.f)
The distance travelled is 111 m)3 s.f.)

7. (i) Taking the upward direction as positive:

$$s = ?$$

$$u = 3$$

$$a = -9.8$$

$$t = t$$

$$s = ut + \frac{1}{2}at^{2}$$

$$s = 3t - 4.9t^{2}$$

So the height above the ground is given by $h = 1 + 3t - 4.9t^2$

(ii)
$$h = 0$$

 $1 + 3t - 4.9t^2 = 0$
 $4.9t^2 - 3t - 1 = 0$
 $t = \frac{3 \pm \sqrt{9 + 19.6}}{9.8}$
 $t = 0.85$ s or $t = -0.24$ s (2 s.f.)
Only the positive answer makes sense so $t = 0.85$ s (2 s.f.)

- (iii) Using v = u + atv = 3 − 9.8×0.8518... v = −5.347... It hits the ground at 5.35 m s⁻¹ in the downward direction.
- (iv) Air resistance is negligible.

Edexcel AS Maths Kinematics 3 Exercise solutions

8. For the first part of the journey (acceleration): u = 0v = u + atV = 18 18 = 0 + 3t a=3 t=6 t = ?For the last part of the journey (deceleration) u–18 v = u + atv = o0=18-6t t=3 a = -6 t = ?Total journey time = 8 mins 9 s. For the first part of the journey (acceleration) $v^2 = u^2 + 2as$ $18^2 = 0^2 + 2 \times 3 \times 5$ *6s* = 324 s = 54 For the second part of the journey (constant speed) $t = 8 \times 60 = 480$ s = 18 × 480 = 8640 For the last part of the journey (deceleration) $v^2 = u^2 + 2as$ $O^2 = 18^2 + 2 \times -6 \times 5$ 125 = 324 s = 27 Total distance travelled = 54 + 8640 + 27 = 8720 m.

9. (i) Taking the downward direction as positive:

s = h	$S = \mu t + \frac{1}{2} a t^2$
u = o	$h = 0 + 4.9 \times 1.5^{2}$
a = 9.8	h = 11.025
t = 1.5 The height = 11 m (2.s.f.)	

(ii) u = 0 v = ? a = 9.8 t = t v = u + atv = 9.8t m s⁻¹ in a downward direction (iii) t = 1.5 $v = 9.8 \times 1.5 = 14.7$ The ball is moving at 14.7 m s⁻¹.