Edexcel AS Mathematics Kinematics

Section 2: Velocity and acceleration

Solutions to Exercise level 3

1. $100 \mathrm{~km} \mathrm{~h}^{-1}=\frac{100000}{3600}=\frac{1000}{36} \mathrm{~m} \mathrm{~s}^{-1}$

Average acceleration $=\frac{1000}{36 \times 8}=3.47 \mathrm{~ms}^{-2}$ (3 s.f.)
$60 \mathrm{~km} \mathrm{~h}^{-1}=\frac{60000}{3600}=\frac{600}{36} \mathrm{~ms} \mathrm{~s}^{-1}$
Average acceleration $=\frac{600}{36 \times 3}=5.56 \mathrm{~ms}^{-2}(3 \mathrm{~s} . f$.

The comparison is not fair - in the second case the acceleration would not be sustainable.
increase in velocity $=40 \mathrm{~km} \mathrm{~h}^{-1}=\frac{40000}{3600}=\frac{400}{36} \mathrm{~m} \mathrm{~s}^{-1}$
This would be over a time of 5 seconds
Average acceleration $=\frac{400}{36 \times 5}=2.22 \mathrm{~ms}^{-2}(3 \mathrm{~s} . f$.
2. (i) $\frac{100 \mathrm{kmh}^{-1}}{8 \mathrm{~seconds}}=12.5 \mathrm{kmh}^{-1} \mathrm{~s}^{-1}$
(ii) $12.5 \mathrm{kmh}^{-1} \mathrm{~s}^{-1}=\frac{12.5 \mathrm{kmh}^{-1}}{1 \mathrm{sec}}=\frac{\frac{12.5 \mathrm{~km}}{1 \text { hour }}}{1 \mathrm{sec}}$

$$
=\frac{\frac{12.5 \mathrm{~km}}{1 \mathrm{sec}}}{1 \text { hour }}=\frac{12.5 \mathrm{kms}^{-1}}{1 \text { hour }}=12.5 \mathrm{kms}^{-1} \mathrm{~h}^{-1}
$$

so it is the same.
3. (i) For acceleration, $v=m \times \frac{1}{6} T=\frac{1}{6} m T$ using area under graph, $D=2 \times \frac{1}{2} V \times \frac{1}{6} T+V \times \frac{2}{3} T$

$$
\begin{aligned}
& =\frac{5}{6} V T \\
& =\frac{5}{6} \times \frac{1}{6} m T \times T \\
& =\frac{5}{36} m T^{2}
\end{aligned}
$$

(ii) Let the new time for accelerating and decelerating be kT.

For acceleration, $v_{1}=m \times k T=m k T$

Edexcel AS Maths Kinematics 2 Exercise solutions

Time at constant speed $=\frac{7}{9} T-2 k T$
using area under graph, $D=2 \times \frac{1}{2} V_{1} \times k T+V_{1}\left(\frac{7}{9}-2 k\right) T$

$$
=\left(k+\frac{7}{9}-2 k\right) V_{1} T=\left(\frac{7}{9}-k\right) \times m k T^{2}
$$

This distance must be the same as in the previous case,

$$
\begin{aligned}
& \text { so } \frac{5}{36} m T^{2}=\left(\frac{7}{9}-k\right) m k T^{2} \\
& \begin{array}{l}
5=36\left(\frac{7}{9}-k\right) k \\
5=28 k-36 k^{2} \\
36 k^{2}-28 k+5=0 \\
(2 k-1)(18 k-5)=0 \\
k=\frac{1}{2} \text { or } \frac{5}{18}
\end{array} \\
& k=\frac{1}{2} \text { is not possible, since } 2 k<\frac{7}{9} \text { so the time spent accelerating is } \frac{5}{18} T
\end{aligned}
$$

4. First competítor runs at speed 13 for t hours, and speed $\left(14+\frac{2}{3} t\right)$ for $(3-t)$ hours.
Total distance $=42.375$, so $42.375=13 t+\left(14+\frac{2}{3} t\right)(3-t)$

$$
\begin{aligned}
& 16 t^{2}-24 t+9=0 \\
& (4 t-3)^{2}=0 \\
& t=\frac{3}{4}
\end{aligned}
$$

So speed for second stage is 14.5

For second competitor, constant deceleration starting from 16, time 3, distance 42.375 From area under graph,
$42.375=\frac{1}{2}(16+v) \times 3$
$v=12.25$

3

Time at which speed $=14.5$ (same as other competitor) is given by $14.5=16-1.25 t$
$t=1.2$

Furthest distance apart is shaded area

$$
\begin{aligned}
\text { Distance } & =\left(\frac{1}{2} \times 1.5 \times 1.2\right)+(1.5 \times 0.75) \\
& =2.025 \mathrm{~km}
\end{aligned}
$$

