Section 2: Velocity and acceleration

Solutions to Exercise level 1

1. (i) Acceleration is the gradient of the graph in the first 10 seconds.

Gradient $=\frac{30}{10}=3$
Acceleration $=3 \mathrm{~ms}^{-2}$.
(ii) Gradient of graph in last 5 seconds $=-\frac{30}{5}=-6$

Deceleration $=6 \mathrm{~ms}^{-2}$.
(iii) Total distance travelled $=$ area under graph

Area $A=\frac{1}{2} \times 10 \times 30=150$
Area $B=5 \times 30=150$
Area $C=\frac{1}{2} \times 5 \times 30=75$
Total distance travelled $=375 \mathrm{~m}$.

2. (i) $O A=\frac{2}{5}=0.4 \mathrm{~m} \mathrm{~s}^{-2}$
$A B=\frac{-6}{2}=-3 \mathrm{~ms}^{-2}$
$B C=\frac{3}{3}=1 \mathrm{~ms}^{-2}$
$C D=0 \mathrm{~ms}^{-2}$
$D E=\frac{1}{4}=0.25 \mathrm{~m} \mathrm{~s}^{-2}$
(ii)
acceleration
(ms^{-2})

3. (i) The time for the whole journey is $3 T$ seconds, so $T=15$ seconds.
(ii) Acceleration $=\frac{-V}{2 T}=-\frac{V}{30}$

Edexcel AS Maths Kinematics 2 Exercise solutions

$$
-\frac{v}{30}=-1.5 \Rightarrow v=45 \mathrm{~ms}^{-1}
$$

4. (i)

(ii) Acceleration from A to $B=\frac{12}{2}=6 \mathrm{~ms}^{-2}$.

Acceleration from B to $C=3 \mathrm{~ms}^{-2}$
(iií) From B to $C, 3=\frac{v-12}{10}$

$$
\begin{aligned}
& 30=v-12 \\
& v=42
\end{aligned}
$$

The speed at C is $42 \mathrm{~ms}^{-1}$.
(iv) Deceleration $=\frac{42}{10}=4.2 \mathrm{~ms}^{-2}$.
5. (i) 0 s to $5 \mathrm{~s}: a=\frac{7}{5}=1.4 \mathrm{~m} \mathrm{~s}^{-2}$

5 s to $15 \mathrm{~s}: a=\frac{3}{10}=0.3 \mathrm{~ms}^{-2}$
15 s to $18 \mathrm{~s}: a=0 \mathrm{~ms}^{-2}$
18 s to $20 \mathrm{~s}: a=\frac{-10}{2}=-5 \mathrm{~m} \mathrm{~s}^{-2}$
(ii) 0 s to $5 \mathrm{~s}: s=\frac{1}{2} \times 5 \times 7=17.5 \mathrm{~m}$

5 s to $15 \mathrm{~s}: s=\frac{1}{2} \times 10 \times(7+10)=85 \mathrm{~m}$
15 s to $18 \mathrm{~s}: \mathrm{s}=10 \times 3=30 \mathrm{~m}$
18 s to $20 \mathrm{~s}: s=\frac{1}{2} \times 2 \times 10=10 \mathrm{~m}$
Total dist $=17.5+85+30+10=142.5 \mathrm{~m}$
(iii) Average speed $=\frac{142.5}{20}=7.125 \mathrm{~m} \mathrm{~s}^{-1}$

Edexcel AS Maths Kinematics 2 Exercise solutions

It is not a realistic model, as cars do not usually suddenly change from one constant acceleration to another constant acceleration.
6. (i) 0 sto $5 \mathrm{~s}: a=\frac{-6}{5}=-1.2 \mathrm{~m} \mathrm{~s}^{-2}$

5 stog $\mathrm{s}: a=\frac{-1}{4}=-0.25 \mathrm{~m} \mathrm{~s}^{-2}$
g sto $12 \mathrm{~s}: a=\frac{-12}{3}=-4 \mathrm{~m} \mathrm{~s}^{-2}$
$12 \mathrm{sto} 16 \mathrm{~s}: a=\frac{-1}{4}=-0.25 \mathrm{~m} \mathrm{~s}^{-2}$
(ii) O sto $5 \mathrm{~s}: \mathrm{s}=\frac{1}{2} \times 5 \times(20+14)=85 \mathrm{~m}$ 5 stog s: $s=\frac{1}{2} \times 4 \times(14+13)=21 \mathrm{~m}$ 9 s to $12 \mathrm{~s}: \mathrm{s}=\frac{1}{2} \times 3 \times(13+1)=21 \mathrm{~m}$ 12 s to $16 \mathrm{~s}: s=\frac{1}{2} \times 4 \times 1=2 \mathrm{~m}$ Total dist $=85+54+21+2=162 \mathrm{~m}$
(iii) Average speed $=\frac{162}{16}=10.125 \mathrm{~m} \mathrm{~s}^{-1}$

