Edexcel AS Mathematics Kinematics

Section 2: Velocity and acceleration

Solutions to Exercise level 1

1. (i) Acceleration is the gradient of the graph in the first 10 seconds.

Gradient =
$$\frac{30}{10}$$
 = 3
Acceleration = 3 ms⁻²

- (ii) Gradient of graph in last 5 seconds $= -\frac{30}{5} = -6$ Deceleration $= 6 \text{ ms}^{-2}$.
- (iii) Total distance travelled = area under graph Area $A = \frac{1}{2} \times 10 \times 30 = 150$ Area $B = 5 \times 30 = 150$ Area $C = \frac{1}{2} \times 5 \times 30 = 75$ Total distance travelled = 375 m.

2. (i)
$$DA = \frac{2}{5} = 0.4 \text{ m s}^{-2}$$

 $AB = \frac{-6}{2} = -3 \text{ m s}^{-2}$
 $BC = \frac{3}{3} = 1 \text{ m s}^{-2}$
 $CD = 0 \text{ m s}^{-2}$
 $DE = \frac{1}{4} = 0.25 \text{ m s}^{-2}$

3. (i) The time for the whole journey is 3T seconds, so T = 15 seconds.

(ii) Acceleration
$$=\frac{-V}{2T}=-\frac{V}{30}$$

Edexcel AS Maths Kinematics 2 Exercise solutions

$$-\frac{V}{30} = -1.5 \quad \Rightarrow V = 45 \text{ ms}^{-1}$$

4.

(i) velocity (ms⁻¹)

$$12 - B$$

 $4 - 2$
 $12 - 22$
time (s)

(ii) Acceleration from A to B =
$$\frac{12}{2}$$
 = 6 ms⁻².
Acceleration from B to C = 3 ms⁻²

(iii) From B to C,
$$3 = \frac{V - 12}{10}$$

 $30 = V - 12$
 $V = 42$
The speed at C is 42 ms⁻¹.

(iv) Deceleration
$$=\frac{42}{10}=4.2$$
 ms⁻².

5. (i)
$$0 \le t_0 5 \le a = \frac{7}{5} = 1.4 \text{ m s}^{-2}$$

 $5 \le t_0 15 \le a = \frac{3}{10} = 0.3 \text{ m s}^{-2}$
 $15 \le t_0 18 \le a = 0 \text{ m s}^{-2}$
 $18 \le t_0 20 \le a = \frac{-10}{2} = -5 \text{ m s}^{-2}$

(ii)
$$0 \le to 5 \le : s = \frac{1}{2} \times 5 \times 7 = 17.5 \text{ m}$$

 $5 \le to 15 \le : s = \frac{1}{2} \times 10 \times (7 + 10) = 85 \text{ m}$
 $15 \le to 18 \le : s = 10 \times 3 = 30 \text{ m}$
 $18 \le to 20 \le : s = \frac{1}{2} \times 2 \times 10 = 10 \text{ m}$
Total dist = 17.5 + 85 + 30 + 10 = 142.5 m

(iii) Average speed =
$$\frac{142.5}{20}$$
 = 7.125 m s⁻¹

Edexcel AS Maths Kinematics 2 Exercise solutions

It is not a realistic model, as cars do not usually suddenly change from one constant acceleration to another constant acceleration.

- 6. (i) $0 \le to 5 \le a = \frac{-6}{5} = -1.2 \text{ m s}^{-2}$ $5 \le to 9 \le a = \frac{-1}{4} = -0.25 \text{ m s}^{-2}$ $9 \le to 12 \le a = \frac{-12}{3} = -4 \text{ m s}^{-2}$ $12 \le to 16 \le a = \frac{-1}{4} = -0.25 \text{ m s}^{-2}$
 - (ii) $0 \le to 5 \le s = \frac{1}{2} \times 5 \times (20 + 14) = 85 \text{ m}$ $5 \le to 9 \le s = \frac{1}{2} \times 4 \times (14 + 13) = 21 \text{ m}$ $9 \le to 12 \le s = \frac{1}{2} \times 3 \times (13 + 1) = 21 \text{ m}$ $12 \le to 16 \le s = \frac{1}{2} \times 4 \times 1 = 2 \text{ m}$ Total dist = 85 + 54 + 21 + 2 = 162 m

(iii) Average speed =
$$\frac{162}{16}$$
 = 10.125 m s⁻¹