Section 1: Displacement and distance

Solutions to Exercise level 3

1. The satellite takes 1 day to travel around the circumference of a circle with radius 42,164 km.

Circumference of circle $=2 \pi \times 42164$
Number of hours taken $=24$
speed $=\frac{2 \pi \times 42164}{24}=11000 \mathrm{kmh}^{-1}$

The velocity has magnítude $11000 \mathrm{kmh}^{-1}$ and is directed along the tangent to the orbit.
2. If the rocket accelerates at 3.5 g , the acceleration is $35 \mathrm{~ms}^{-1}$.

The human body can survive this acceleration for 30 minutes $=1800$ seconds.
Acceleration $=\frac{\text { change in velocity }}{\text { time }} \Rightarrow$ change in velocity $=$ acceleration \times time so maximum change in velocíty that is possible $=35 \times 1800=63000 \mathrm{~ms}^{-1}$ so the human body can tolerate acceleration from rest to $63000 \mathrm{~ms}^{-1}$.

$$
\begin{aligned}
\text { Escape velocíty }=40200 \mathrm{~km} \mathrm{~h}^{-1} & =\frac{40200 \times 1000}{3600} \mathrm{~ms}^{-1} \\
& =11167 \mathrm{~ms}^{-1}
\end{aligned}
$$

This is less than the maximum change in velocity that the human body can tolerate, so it is well within human tolerance.
3. (i) Times taken in minutes are $25,24,25,61,29,31,55,26$

The fastest train is the 1106.
Average speed $=\frac{36}{24 / 60}=\frac{36 \times 60}{24}=90$ miles per hour
(ii) The 1042 is passed by the 1100 , the 1106 and the 1115.

The 1057 is passed by the 1100 , the 1106 , the 1115 , the 1118 and the 1120.
For the 1057 : time taken $=55$ mins so average speed $=\frac{36}{55}$ miles $/ \mathrm{min}$
For the 11 20: time taken $=31$ mins so average speed $=\frac{36}{31}$ miles $/ \mathrm{min}$
1120 leaves 23 minutes later
Let t be the time that they pass, measured in minutes from 1120
Distance travelled by 1057 is $(23+t) \times \frac{36}{55}$

Edexcel AS Maths Kinematics 1 Exercise solutions

Distance travelled by 1120 is $t \times \frac{36}{31}$
$\frac{36}{55}(23+t) \times=\frac{36}{31} t$
$31(23+t)=55 t$
$713=24 t$
$29.7=t$
Distance $=34.5$
so they pass at about 1150 , about 1.5 miles from Reading.

The straight line model is not realistic as it does not take into account the times stopping at stations.
4.

At first pass saxon horseman: $s_{1}=x t_{1}$
Norman horseman: $d-s_{1}=y t_{1}$
so $\quad d-s_{1}=y \frac{s_{1}}{x}$
$x d=x s_{1}+y s_{1}$
$s_{1}=\frac{x d}{x+y}$
So they pass each other at distance $\frac{x d}{x+y}$ from the saxon army.

For Norman army: $d-s_{3}=u t_{3}$
For saxon reaching Norman army: $s_{3}=x t_{3}$
(1) and (2) gives $\frac{d-s_{3}}{s_{3}}=\frac{u}{x} \Rightarrow x d-x s_{3}=u s_{3} \Rightarrow s_{3}=\frac{x d}{u+x}$ (3)

For Norman reaching saxon army: $d=y t_{2}$
(4)

At second pass saxon horseman: $s_{3}-s_{2}=x\left(t_{4}-t_{3}\right)$

Edexcel AS Maths Kinematics 1 Exercise solutions

Norman horseman: $s_{2}=y\left(t_{4}-t_{2}\right)$
(6)
$s_{3}-s_{2}=x\left(t_{4}-t_{3}\right)=x t_{4}-x t_{3} \quad($ from (5))
$s_{3}-s_{2}=x t_{4}-s_{3}$
(from (2))
$2 s_{3}-s_{2}=x t_{4}$
$\frac{2 x d}{u+x}-s_{2}=x t_{4}$
(from (3))
$s_{2}=y t_{4}-y t_{2}=y t_{4}-d$
(from (6) and (4))
$s_{2}+d=y t_{4}$

Hence $\frac{2 x y d}{u+x}-s_{2} y=s_{2} x+d x$

$$
s_{2} x+s_{2} y=\frac{2 x y d}{u+x}-d x
$$

$$
s_{2}(x+y)=\frac{x d(2 y-x-u)}{u+x}
$$

$$
s_{2}=\frac{x d(2 y-x-u)}{(x+y)(u+x)}
$$

so they pass each other at distance $\frac{x d(2 y-x-u)}{(x+y)(u+x)}$ from the saxon army.
(i) $\quad u>2 y-x \Rightarrow x>2 y-u$

The speed of the saxon is more than twice the speed of the Norman, so the saxon will return to the saxon line before the Norman reaches the saxon line.
(ii) $u<y-2 x \Rightarrow y>2 x-u$

The speed of the Norman is more than twice the speed of the saxon, so the Norman will return to the Norman line before the saxon reaches the Norman line.

