Edexcel AS Maths Statistical hypothesis testing

Section 2: More about hypothesis testing

Solutions to Exercise level 2

1. Let p be the probability that a student obtains an A or B grade.
$H_{0}: p=0.6$
$H_{1}: p<0.6$
significance level $=5 \%$
Let x be the number of students who obtained an A or B grade. Need the highest possible value of a for which $P(x \leq a)<0.05$

For $B(19,0.6), \quad P(x \leq 7)=0.0352$

$$
P(x \leq 8)=0.0885
$$

The highest possible value of a is 7 .
The critical region is $x \leq 7$.

The observed value of $x=8$ does not lie in the critical region, so accept Ho. There is not sufficient evidence to support the Head of Department's concerns.
2. Let p be the probability of obtaining a head.
$H_{0}: p=0.5$
$H_{1}: p>0.5$
significance level $=5 \%$

Let x be the number of heads obtained.
Need the lowest possible value of a for which $P(x \geq a)<0.05$

$$
\begin{aligned}
& \Rightarrow 1-P(x \leq a-1)<0.05 \\
& \Rightarrow P(x \leq a-1)>0.95
\end{aligned}
$$

$$
\text { For } \begin{aligned}
B(18,0.5), & P(x \leq 11)=0.8811 \\
& P(x \leq 12)=0.9519
\end{aligned}
$$

The lowest possible value of $a-1$ is 12 , so the lowest possible value of a is 13 . The critical region is $x \geq 13$.

The observed value of $x=11$ does not lie in the critical region, so accept Ho. There is not sufficient evidence to suggest that the coin is biased.

Edexcel AS Maths Hyp testing 2 Exercise solutions

3. Let p be the probability that a seed germinates.
$H_{0}: p=0.65$
$H_{1}: p<0.65$
significance level $=5 \%$
Let x be the number of seeds that germinate.
Need the highest possible value of a for which $P(x \leq a)<0.05$

For $B(16,0.65), P(x \leq 6)=0.0229$

$$
P(x \leq 7)=0.0671
$$

The highest possible value of a is 6 .
The critical region is $x \leq 6$.
The observed value of $x=8$ does not lie in the critical region, so accept Ho. There is not sufficient evidence to suggest that there is any reduction in the germination rate.
4. Let p be the probability that a student does no fitness training or sporting activity out of school.
$H_{0}: p=0.7$
$H_{1}: p<0.7$
signíficance level $=1 \%$

Let x be the number of students who do no fitness training or sporting activity out of school.
Need the highest possible value of a for which $P(x \leq a)<0.1$

For $B(10,0.7), \quad P(x \leq 4)=0.0473$
$P(x \leq 5)=0.1503$

The highest possible value of a is 4 .
The critical region is $x \leq 4$.

The observed value of $\chi=5$ does not lie in the critical region, so accept Ho.
There is not sufficient evidence to support the criticism by the sporting groups.
5. (i) Let p be the probability that a casualty has to wait more than 30 minutes $H_{o}: p=0.3$ $H_{1}: p<0.3$

Edexcel AS Maths Hyp testing 2 Exercise solutions

Let x be the number of patients who had to wait more than 30 minutes.
using $x \sim B(20,0.3) \quad P(x \leq 2)=0.0355$

At the 5% significance level:
$P(x \leq 2)<0.05$, so reject Ho. There is evidence to suggest that the
proportion of patients waiting more than 30 minutes has decreased.
(ii) At the 2% significance level:
$P(x \leq 2)>0.02$, so accept Ho. There is not sufficient evidence to suggest that the proportion of patients waiting more than 30 minutes has decreased.
(iii) At the 5% level, need to find highest value of r such that $P(x \leq r)<0.05$

From tables,

$$
\begin{aligned}
& P(x \leq 2)=0.0355 \\
& P(x \leq 3)=0.1071
\end{aligned}
$$

The highest value of ris 2
The critical region is $x \leq 2$.
6. (i) Let p be the probability that a student gets a grade $A-C$.
$H_{0}: p=\frac{2}{3}$
$H_{1}: p \neq \frac{2}{3}$
significance level $=5 \%$

16 out of 20 is in the upper tail.
Let x be the number of students who got grades $A-C$.
using $x \sim B\left(20, \frac{2}{3}\right) \quad P(x \geq 16)=1-P(x \leq 15)$

$$
=1-0.8485
$$

$$
=0.1515
$$

At the 5% significance level for a two-tailed test: $P(x \geq 16)>0.025$, so accept H. There is not sufficient evidence to suggest that the proportion of students getting grades $A-C$ is different.
(ii) Let p be the probabilíty that a student gets a grade A-C.
$H_{0}: p=\frac{2}{3}$
$H_{1}: p>\frac{2}{3}$
significance level $=5 \%$

Let χ be the number of students who got grades $A-C$.
using $x \sim B\left(20, \frac{2}{3}\right) \quad P(x \geq 16)=1-P(x \leq 15)$

$$
=1-0.8485
$$

$$
=0.1515
$$

At the 5% significance level for a one-tailed test:

Edexcel AS Maths Hyp testing 2 Exercise solutions

$P(x \geq 16)>0.05$, so accept H_{o}. There is not sufficient evidence to suggest that the proportion of students getting grades $A-C$ has increased.
7. (i) Let p be the probability that a pass is missed.
$H_{0}: p=0.6$
$H_{1}: p<0.6$
significance level $=5 \%$
Let x be the number of passes which are missed.
using $x \sim B(17,0.6) \quad P(x \leq 5)=0.0106$
At the 5% significance level for a one-tailed test:
$P(X \leq 5)<0.05$, so reject H_{o}. There is evidence to suggest that the proportion of missed passes has decreased.
(ii) Let p be the probability that a pass is missed.
$H_{0}: p=0.6$
$H_{1}: p \neq 0.6$
significance level $=5 \%$
Let x be the number of passes which are missed.
using $X \sim B(17,0.6) \quad P(X \leq 5)=0.0106$
At the 5\% significance level for a two-tailed test: $P(X \leq 5)<0.025$, so reject H_{0}. There is evidence to suggest that the proportion of missed passes has decreased.

