

Section 2: More about hypothesis testing

Solutions to Exercise level 1

- 1. (i) $H_o: p = \frac{1}{6}$ $H_1: p < \frac{1}{6}$
 - (ii) Let X be the number of sixes in 20 throws

 $X \sim B(30, \frac{1}{6})$ P(X \le 1) = 0.029 P(X \le 2) = 0.103

- (iii) So the critical region is $X \le 1$. This means that if Jessica gets 1 or fewer sixes in her 30 throws, she will conclude that there is evidence that the dice is biased against six.
- 2. (i) $H_o: p = \frac{1}{6}$ $H_1: p > \frac{1}{6}$
 - (ii) Let X be the number of ones in 12 throws

$$X \sim B(50, \frac{1}{6})$$

P(X \ge 12) = 1 - P(X \le 11)
= 1 - 0.883
= 0.117
P(X \ge 13) = 1 - P(X \le 12)
= 1 - 0.937
= 0.063

- (iii) So the critical region is $X \ge 13$. This means that if Hassan gets 13 or more ones, he will conclude that there is evidence that the dice is biased towards one.
- 3. (i) $H_o: p = \frac{1}{2}$ $H_1: p \neq \frac{1}{2}$
 - (ii) $X \sim B(50, \frac{1}{2})$ P($X \le 18$) = 0.032 Since this is a two-tailed test, the p-value = 2×0.032 = 0.064
 - (iii) p-value > 0.05, so accept Ho. There is not sufficient evidence to suggest that the coin is biased.

Edexcel AS Maths Hypothesis testing Exercise solns

(iv) Each tail needs to have a probability of less than 2.5% $P(X \le 18) = 0.032$ $P(X \le 17) = 0.016$ By symmetry $P(X \ge 32) = 0.032$ and $P(X \ge 33) = 0.016$ The critical region is $X \le 17$ and $X \ge 33$.