Edexcel AS Maths Statistical hypothesis testing "integral

Section 1: Introducing hypothesis testing

Solutions to Exercise level 1

1. (i) $H_{0}: p=\frac{1}{6}$
$H_{1}: p<\frac{1}{6}$
(ii) Let x be the number of sixes in 20 throws
$X \sim B\left(20, \frac{1}{6}\right)$
$P(x \leq 1)=0.130$
The p-value is 0.130
(iii) $0.130>0.05$ so accept Ho. There is insufficient evidence to suggest that the dice is biased.
2. (i) $H_{0}: p=\frac{1}{6}$
$H_{1}: p>\frac{1}{6}$
(ii) Let x be the number of ones in 12 throws
$X \sim B\left(12, \frac{1}{6}\right)$
$P(x \geq 5)=1-P(x \leq 4)$
$=1-0.9636$
$=0.0364$
The p-value is 0.0364
(ii) $0.0364<0.1$ so reject H. The evidence suggests that the dice is biased towards a 1 .
3. (i) $H_{0}: p=0.9$
$H_{1}: p<0.9$
(ii) Let x be the number of times the bus is late in 15 journeys
$x \sim B(15,0.9)$
$P(x \leq 10)=0.012$
The p-value is 0.012
(iii) $0.012<0.05$ so reject Ho. The evidence suggests that the bus is on time in less than 90% of journeys.
4. (i) $H_{0}: p=0.8$
$H_{1}: p>0.8$

Edexcel AS Maths Hypothesis testing 1 Exercise solns

(ii) Let X be the number of times the bus is late in 16 journeys
$x \sim B(16,0.8)$
$P(x \geq 15)=1-P(x \leq 14)$
$=1-0.859$
$=0.141$
The p-value is 0.141
(iii) $0.141>0.1$, so accept Ho. There is insufficient evidence that the bus is on time more than 80% of the time.

