Edexcel AS Mathematics The binomial distribution

Section 1: Introducing the binomial distribution

Solutions to Exercise level 3

1. (i) The number of matches in a box is independent of the numbers of matches in other boxes
The probability that a matchbox contains fewer than 42 matches is constant.
(ii) $Y \sim B(8,0.1)$
$P(Y=0)=0.9^{8}=0.4305$ (4 s.f.)
$P(Y \geq 2)=1-P(Y \leq 1)=1-0.8131=0.1869$
Probabilíty $=2 \times 0.4305 \times 0.186 \mathrm{~g}=0.161$ ($3 \mathrm{~s} . \mathrm{f}$.)
2. (i) Let x be the number of seeds that germinate, so $x \sim B(10,0.9)$

Expected number to germinate is 9
$P(x<9)=P(x \leq 8)=0.2639$ (4 s.f.)
(ii) $P(x \geq 8)=1-P(x \leq 7)=1-0.0702=0.9298$ (4 s.f.)

Let Y be the number of trays in which at least 8 seeds germinate, so $Y \sim B(20,0.9298)$
$P(Y \geq 19)=P(Y=19)+P(Y=20)$
$=20 \times 0.9298^{19} \times 0.0702+0.9298^{20}$
$=0.5854$ (4 s.f.)
3. $W \sim B(n, 0.27)$
$P(W \geq 1)>0.95$
$1-P(W=0)>0.95$
$P(W=0)<0.05$
$0.73^{n}<0.05$
$n \log 0.73<\log 0.05$
$n>9.5$
so the smallest value of n is 10 .

Edexcel AS Maths Binomial distribution 1 Exercise solutions

4. $T \sim B(11, p)$

$$
\begin{aligned}
\operatorname{var}(T)=1.76 & \Rightarrow 11 p(1-p)=1.76 \\
& \Rightarrow p(1-p)=0.16 \\
& \Rightarrow 25 p-25 p^{2}=4 \\
& \Rightarrow 25 p^{2}-25 p+4=0 \\
& \Rightarrow(5 p-4)(5 p-1)=0 \\
& \Rightarrow p=0.8 \text { or } 0.2
\end{aligned}
$$

5. (i) Let number of times waiting more than six minutes be x, so $x \sim B(10,0.4)$
(a) $P(x \leq 3)=0.3823$ (4 s.f)
(b) $P(x>4)=1-P(x \leq 4)=1-0.6331=0.3669$ (4 s.f.)
(ii) Mean $=n p=10 \times 0.4=4$
standard deviation $=\sqrt{n p q}=\sqrt{10 \times 0.4 \times 0.6}=1.549$ (4 s.f.)
(iii) (a) Mean $=\frac{51}{13}=3.923$ (4 s.f.)

Standard deviation $=\sqrt{\frac{321-13\left(\frac{51}{13}\right)^{2}}{12}}=3.174$ (4 s.f)
(b) The data do not support claire's beliefs, as although the theoretical mean and the sample mean are close (3.9 is close to 4), there is quite a large difference between the theoretical standard deviation of 1.5 and the sample standard deviation of 3.2. This suggests that a binomial model is not appropriate.

