Section 1: Introducing the binomial distribution

Solutions to Exercise level 1

1. $x \sim B(8,0.6)$
(i) $P(x=0)=(0.4)^{8}=0.000655$ (3 s.f.)
(ii) $P(X=3)={ }_{8} c_{3}(0.6)^{3}(0.4)^{5}=\frac{8 \times 7 \times 6}{1 \times 2 \times 3}(0.6)^{3}(0.4)^{5}=0.124 \quad$ (3 s.f.)
(iii) $P(X=6)={ }_{8} C_{6}(0.6)^{6}(0.4)^{2}=\frac{8 \times 7}{1 \times 2}(0.6)^{6}(0.4)^{2}=0.20$ (3 s.f.)
2. $x \sim B(10,0.7)$
(i) $P(x=0)=(0.3)^{10}=0.00000590$ (3 s.f.)
(ii) $P(x=1)={ }_{10} c_{1} \times 0.7 \times(0.3)^{9}=10 \times 0.7 \times(0.3)^{9}=0.000138$ (3 s.f.)
(iii) $P(x>1)=1-P(x \leq 1)$

$$
\begin{aligned}
& =1-0.000143 \\
& =0.9999(4 \mathrm{s.f.})
\end{aligned}
$$

(iv) $P(x=2)={ }_{10} c_{2}(0.7)^{2}(0.3)^{8}=\frac{10 \times 9}{1 \times 2}(0.7)^{2}(0.3)^{8}=0.001447$ (4 s.f.) $P(x<3)=P(x \leq 2)$

$$
=0.0015 \mathrm{~g} \text { (3 s.f.) }
$$

3. $x \sim B(12,0.4)$

$$
\begin{aligned}
P(x=4) & ={ }_{12} c_{4}(0.4)^{4}(0.6)^{8} \\
& =\frac{12 \times 11 \times 10 \times 9}{1 \times 2 \times 3 \times 4}(0.4)^{4}(0.6)^{8}=0.213 \\
P(x=5) & ={ }_{12} c_{5}(0.4)^{5}(0.6)^{7} \\
& =\frac{12 \times 11 \times 10 \times 9 \times 8}{1 \times 2 \times 3 \times 4 \times 5}(0.4)^{5}(0.6)^{7}=0.227 \\
P(x=6) & ={ }_{12} c_{6}(0.4)^{6}(0.6)^{6} \\
& =\frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{1 \times 2 \times 3 \times 4 \times 5 \times 6}(0.4)^{6}(0.6)^{6}=0.177
\end{aligned}
$$

The most likely outcome for x is 5 .

Edexcel AS Maths Binomial distribution 1 Exercise solns

4. $x \sim B(8,0.4)$

$$
\begin{aligned}
P(x=3) & ={ }_{8} C_{3}(0.4)^{3}(0.6)^{5} \\
& =\frac{8 \times 7 \times 6}{1 \times 2 \times 3}(0.4)^{3}(0.6)^{5}=0.279 \\
P(x=4) & ={ }_{8} c_{4}(0.4)^{4}(0.6)^{4} \\
& =\frac{8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4}(0.4)^{4}(0.6)^{4}=0.232
\end{aligned}
$$

The most likely outcome for x is 3 .
5. Let x be the number of students who pass
$X \sim B(5,0.9)$
(i) $P(x=5)=(0.9)^{5}=0.590$ (3s.f.)
(ii) $\quad P(\chi=2)={ }_{5} C_{2} \times(0.9)^{2} \times(0.1)^{3}=\frac{5 \times 4}{1 \times 2} \times(0.9)^{2} \times(0.1)^{3}=0.0081$
(iii) $P(x \geq 3)=1-P(x \leq 2)$

$$
\begin{aligned}
& =1-0.00856 \\
& =0.991(3 \mathrm{s.f.})
\end{aligned}
$$

(iv) Since the probability that all five students pass is more than 0.5, this must be the greatest probability.
so the most likely number of students who pass is 5 .
6. Let χ be the number of times I lose my suítcase
$x \sim B(6,0.05)$
(i) $P(x=0)=(0.95)^{6}=0.735$ (3s.f.)
(ii) $P(x \geq 1)=1-P(x=0)=1-0.735=0.265$ (3 s.f.)
(íí) $P(\chi=1)={ }_{6} C_{1}(0.05)(0.95)^{5}=6(0.05)(0.95)^{5}=0.232$ (3 s.f.)
7. Let x be the number of orders dispatched on the next working day.
$X \sim B(10,0.75)$

Edexcel AS Maths Binomial distribution 1 Exercise solns
(i) $P(\chi=4)={ }_{10} C_{4}(0.75)^{4}(0.25)^{6}$

$$
\begin{aligned}
& =\frac{10 \times 9 \times 8 \times 7}{1 \times 2 \times 3 \times 4}(0.75)^{4}(0.25)^{6} \\
& =0.0162(3 \mathrm{s.f.})
\end{aligned}
$$

(ii) $P(x<4)=P(x \leq 3)$

$$
=0.00351 \text { (3 s.f.) }
$$

