Section 4: Finding distances

Solutions to Exercise level 2

1. (i) Direction vector of line is $\left(\begin{array}{c}3 \\ 1 \\ -8\end{array}\right)-\left(\begin{array}{c}6 \\ -5 \\ 1\end{array}\right)=\left(\begin{array}{c}-3 \\ 6 \\ -9\end{array}\right)=-3\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$

An equation for the line is $\underset{\sim}{r}=\left(\begin{array}{c}6 \\ -5 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$.
(ii) The direction vector of the line is parallel to the vector $\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$, which is the vector perpendicular to the plane, so the line is perpendicular to the plane.
(ilí) $\left[\left(\begin{array}{c}6 \\ -5 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)\right] \cdot\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)=-9$

$$
\begin{aligned}
& \left(\begin{array}{c}
6 \\
-5 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)=-9 \\
& 6+10+3+\lambda(1+4+9)=-9 \\
& 19+14 \lambda=-9 \\
& 14 \lambda=-28 \\
& \lambda=-2
\end{aligned}
$$

Point of intersection is $\underset{\sim}{r}=\left(\begin{array}{c}6 \\ -5 \\ 1\end{array}\right)-2\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)=\left(\begin{array}{c}4 \\ -1 \\ -5\end{array}\right)$
coordinates of point of intersection are ($4,-1,-5$).
(iv) The shortest distance from a point to a plane is the perpendicular distance, so this is the distance between $(6,-5,1)$ and $(4,-1,-5)$.

$$
\begin{aligned}
\text { Distance } & =\sqrt{(6-4)^{2}+(-5-(-1))^{2}+(1-(-5))^{2}} \\
& =\sqrt{2^{2}+(-4)^{2}+6^{2}} \\
& =\sqrt{56}
\end{aligned}
$$

Edexcel AS FM Vectors 1 Exercise solutions

2. (i) The shortest distance of a point (α, β, γ) from a plane

$$
n_{1} x+n_{2} y+n_{3} z+d=0 \text { is } \frac{\left|n_{1} \alpha+n_{2} \beta+n_{3} \gamma+d\right|}{\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}}}
$$

The point is $(1,4,-2)$ and the plane is $2 x-4 y+z-3=0$

$$
\begin{aligned}
\text { Shortest distance } & =\frac{|(2 \times 1)+(-4 \times 4)+(1 \times-2)-3|}{\sqrt{2^{2}+(-4)^{2}+1^{2}}} \\
& =\frac{|2-16-2-3|}{\sqrt{4+16+1}} \\
& =\frac{19}{\sqrt{21}}
\end{aligned}
$$

(ii) The shortest distance of a point (α, β, γ) from a plane

$$
n_{1} x+n_{2} y+n_{3} z+d=0 \text { is } \frac{\left|n_{1} \alpha+n_{2} \beta+n_{3} \gamma+d\right|}{\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}}}
$$

The point is $(-3,0,1)$ and the plane is $-2 x+3 y+z-2=0$
Shortest distance is $=\frac{|(-2 \times-3)+(3 \times 0)+(1 \times 1)-2|}{\sqrt{(-2)^{2}+3^{2}+1^{2}}}$

$$
\begin{aligned}
& =\frac{|6+0+1-2|}{\sqrt{4+9+1}} \\
& =\frac{5}{\sqrt{14}}
\end{aligned}
$$

3. (i) Let the point on the line that is closest to P be M.
$\overrightarrow{O M}=\left(\begin{array}{c}1-2 \lambda \\ 2+3 \lambda \\ \lambda\end{array}\right)$
$\overrightarrow{P M}=\left(\begin{array}{c}1-2 \lambda \\ 2+3 \lambda \\ \lambda\end{array}\right)-\left(\begin{array}{c}4 \\ -1 \\ 2\end{array}\right)=\left(\begin{array}{c}-3-2 \lambda \\ 3+3 \lambda \\ -2+\lambda\end{array}\right)$
$\overrightarrow{P M}$ is perpendicular to the line, so $\left(\begin{array}{c}-3-2 \lambda \\ 3+3 \lambda \\ -2+\lambda\end{array}\right) \cdot\left(\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right)=0$

$$
-2(-3-2 \lambda)+3(3+3 \lambda)+(-2+\lambda)=0
$$

$$
6+4 \lambda+9+9 \lambda-2+\lambda=0
$$

$$
14 \lambda=-13
$$

$$
\lambda=-\frac{13}{14}
$$

Edexcel AS FM Vectors 1 Exercise solutions

$\overrightarrow{P M}=\left(\begin{array}{c}-3+\frac{26}{14} \\ 3-\frac{39}{14} \\ -2-\frac{13}{14}\end{array}\right)=\frac{1}{14}\left(\begin{array}{c}-16 \\ 3 \\ -41\end{array}\right)$
$|\overrightarrow{P M}|=\frac{1}{14} \sqrt{16^{2}+3^{2}+41^{2}}=\frac{\sqrt{1946}}{14}=\sqrt{\frac{139}{14}}$
Distance of point from line $=\frac{\sqrt{139}}{\sqrt{14}}=3.15$ (3 s.f.)
(ii) Let the point on the line that is closest to P be M.

$$
\begin{aligned}
& \overrightarrow{O M}=\left(\begin{array}{c}
5+\lambda \\
-1+4 \lambda \\
3-\lambda
\end{array}\right) \\
& \overrightarrow{P M}=\left(\begin{array}{c}
5+\lambda \\
-1+4 \lambda \\
3-\lambda
\end{array}\right)-\left(\begin{array}{c}
2 \\
0 \\
-3
\end{array}\right)=\left(\begin{array}{c}
3+\lambda \\
-1+4 \lambda \\
6-\lambda
\end{array}\right)
\end{aligned}
$$

$\overrightarrow{P M}$ is perpendicular to the line, so $\left(\begin{array}{c}3+\lambda \\ -1+4 \lambda \\ 6-\lambda\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 4 \\ -1\end{array}\right)=0$

$$
3+\lambda+4(-1+4 \lambda)-(6-\lambda)=0
$$

$$
3+\lambda-4+16 \lambda-6+\lambda=0
$$

$$
18 \lambda=7
$$

$$
\lambda=\frac{7}{18}
$$

$$
\overrightarrow{P M}=\left(\begin{array}{c}
3+\frac{7}{18} \\
-1+\frac{28}{18} \\
6-\frac{7}{18}
\end{array}\right)=\frac{1}{18}\left(\begin{array}{c}
61 \\
10 \\
101
\end{array}\right)
$$

$$
|\overrightarrow{P M}|=\frac{1}{18} \sqrt{61^{2}+10^{2}+101^{2}}=\frac{1}{18} \sqrt{14022}=\sqrt{\frac{779}{18}}
$$

Distance of point from line $=\frac{\sqrt{779}}{\sqrt{18}}=6.58$ (3 s.f.)
4. (i) $r=\left(\begin{array}{c}1 \\ 3 \\ -6\end{array}\right)+\lambda\left(\begin{array}{c}0 \\ -3 \\ 1\end{array}\right)$
(ii) This is equivalent to finding the distance between $(1,3,-6)$ and the line

Edexcel AS FM Vectors 1 Exercise solutions

$\underset{\sim}{r}=\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}0 \\ -3 \\ 1\end{array}\right)$.
Let Q be the point on the line nearest to $P(1,3,-6)$.
$\overrightarrow{O Q}=\left(\begin{array}{c}2 \\ 1-3 \lambda \\ 5+\lambda\end{array}\right)$
$\overrightarrow{P Q}=\left(\begin{array}{c}2 \\ 1-3 \lambda \\ 5+\lambda\end{array}\right)-\left(\begin{array}{c}1 \\ 3 \\ -6\end{array}\right)=\left(\begin{array}{c}1 \\ -2-3 \lambda \\ 11+\lambda\end{array}\right)$
$\overrightarrow{P Q}$ is perpendicular to the line, so $\left(\begin{array}{c}1 \\ -2-3 \lambda \\ 11+\lambda\end{array}\right) \cdot\left(\begin{array}{c}0 \\ -3 \\ 1\end{array}\right)=0$

$$
-3(-2-3 \lambda)+11+\lambda=0
$$

$$
10 \lambda=-17
$$

$$
\lambda=-1.7
$$

$\overrightarrow{P Q}=\left(\begin{array}{c}1 \\ 3.1 \\ 9.3\end{array}\right)$
$\overrightarrow{P Q}=\sqrt{1^{2}+3.1^{2}+9.3^{2}}=9.85$ (3 s.f.)
5. (i) If the lines intersect, there are values of λ and μ for which

$$
\left(\begin{array}{c}
3 \\
5 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right)
$$

(1) $3+\lambda=2 \mu$
(2) $5=1+5 \mu$
(3) $-2+2 \lambda=3-\mu$
(2) $\Rightarrow \mu=\frac{4}{5}$
substítuting into (1) $\Rightarrow 3+\lambda=\frac{8}{5} \Rightarrow \lambda=-\frac{7}{5}$
substituting into (3) $\Rightarrow-2+2 \lambda=3-\frac{4}{5} \Rightarrow 2 \lambda=\frac{21}{5} \Rightarrow \lambda=\frac{21}{10}$
since the equations are not consistent, the lines do not intersect.
The direction vectors $\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$ and $\left(\begin{array}{c}2 \\ 5 \\ -1\end{array}\right)$ are not parallel, so the lines are not
parallel. Therefore the lines are skew.

Edexcel AS FM Vectors 1 Exercise solutions

(ii) Let P and Q be the points on the two lines that are closest together.

$$
\begin{aligned}
& \text { So } P \text { has position vector } \underset{\sim}{r}=\left(\begin{array}{c}
3+\lambda \\
5 \\
-2+2 \lambda
\end{array}\right) \\
& \text { and Q has posítion vector } \underset{\sim}{r}=\left(\begin{array}{c}
2 \mu \\
1+5 \mu \\
3-\mu
\end{array}\right) \\
& \overrightarrow{P Q}=\left(\begin{array}{c}
2 \mu \\
1+5 \mu \\
3-\mu
\end{array}\right)-\left(\begin{array}{c}
3+\lambda \\
5 \\
-2+2 \lambda
\end{array}\right)=\left(\begin{array}{c}
-3-\lambda+2 \mu \\
-4+5 \mu \\
5-2 \lambda-\mu
\end{array}\right)
\end{aligned}
$$

$P Q$ is perpendicular to both lines

$$
\begin{aligned}
& \text { so }\left(\begin{array}{c}
-3-\lambda+2 \mu \\
-4+5 \mu \\
5-2 \lambda-\mu
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)=0 \\
& -3-\lambda+2 \mu+2(5-2 \lambda-\mu)=0 \\
& -5 \lambda+7=0 \\
& \lambda=\frac{7}{5} \\
& \text { and }\left(\begin{array}{c}
-3-\lambda+2 \mu \\
-4+5 \mu \\
5-2 \lambda-\mu
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right)=0 \\
& 2(-3-\lambda+2 \mu)+5(-4+5 \mu)-(5-2 \lambda-\mu)=0 \\
& 30 \mu-31=0 \\
& \mu=\frac{31}{30} \\
& \left.\begin{array}{l}
-3-\frac{7}{5}+\frac{31}{15} \\
-4+\frac{31}{6} \\
-4
\end{array}\right)=\left(\begin{array}{c}
-\frac{7}{3} \\
\frac{7}{6} \\
\frac{7}{6}
\end{array}\right) \\
& \text { so } \overrightarrow{P Q}=\left(\begin{array}{c}
-\frac{14}{5}-\frac{31}{30}
\end{array}\right) \\
& \begin{array}{l}
|\overrightarrow{P Q}|=\frac{1}{6} \sqrt{14^{2}+7^{2}+7^{2}}=\frac{1}{6} \sqrt{294}=\frac{7}{6} \sqrt{6}
\end{array}
\end{aligned}
$$

6. The lines can be written as $\underset{\sim}{r}=\left(\begin{array}{c}7 \\ 3 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ 1 \\ -2\end{array}\right)$ and $\underset{\sim}{r}=\left(\begin{array}{c}-8 \\ -1 \\ 3\end{array}\right)+\mu\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)$

Let P and Q be the points on the two lines that are closest together.
So P has position vector $\underset{\sim}{r}=\left(\begin{array}{c}7+3 \lambda \\ 3+\lambda \\ 1-2 \lambda\end{array}\right)$

Edexcel AS FM Vectors 1 Exercise solutions

and Q has position vector $\underset{\sim}{r}=\left(\begin{array}{c}-8+3 \mu \\ -1+2 \mu \\ 3-\mu\end{array}\right)$
$\overrightarrow{P Q}=\left(\begin{array}{c}-8+3 \mu \\ -1+2 \mu \\ 3-\mu\end{array}\right)-\left(\begin{array}{c}7+3 \lambda \\ 3+\lambda \\ 1-2 \lambda\end{array}\right)=\left(\begin{array}{c}-15-3 \lambda+3 \mu \\ -4-\lambda+2 \mu \\ 2+2 \lambda-\mu\end{array}\right)$
$P Q$ is perpendicular to both lines
so $\left(\begin{array}{c}-15-3 \lambda+3 \mu \\ -4-\lambda+2 \mu \\ 2+2 \lambda-\mu\end{array}\right) \cdot\left(\begin{array}{c}3 \\ 1 \\ -2\end{array}\right)=0$
$3(-15-3 \lambda+3 \mu)+(-4-\lambda+2 \mu)-2(2+2 \lambda-\mu)=0$

$$
-14 \lambda+13 \mu=53
$$

and $\left(\begin{array}{c}-15-3 \lambda+3 \mu \\ -4-\lambda+2 \mu \\ 2+2 \lambda-\mu\end{array}\right) \cdot\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)=0$
$3(-15-3 \lambda+3 \mu)+2(-4-\lambda+2 \mu)-(2+2 \lambda-\mu)=0$
$-13 \lambda+14 \mu=55$
Solving these equations simultaneously gives $\lambda=-1, \mu=3$
so $\overrightarrow{P Q}=\left(\begin{array}{c}-15+3+9 \\ -4+1+6 \\ 2-2-3\end{array}\right)=\left(\begin{array}{c}-3 \\ 3 \\ -3\end{array}\right)=3\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right)$
$|\overrightarrow{P Q}|=3 \sqrt{1^{2}+1^{2}+1^{2}}=3 \sqrt{3}$
$P=(4,2,3)$ and $Q=(1,5,0)$

