Section 1: The scalar product

Solutions to Exercise level 2

1. (i) $\overrightarrow{A B}=\binom{0}{3}-\binom{1}{0}=\binom{-1}{3}$
$\overrightarrow{B C}=\binom{2}{5}-\binom{0}{3}=\binom{2}{2}=2\binom{1}{1}$
$\overrightarrow{C D}=\binom{3}{2}-\binom{2}{5}=\binom{1}{-3}$
$\overrightarrow{A D}=\binom{3}{2}-\binom{1}{0}=\binom{2}{2}=2\binom{1}{1}$
(ii) $A B$ is parallel to $D C$, and $B C$ is parallel to $A D, A B C D$ is a parallelogram.
(iii) Angle $A B C$ is angle between vectors $\binom{-1}{3}$ and $\binom{1}{1}$.

$$
\begin{aligned}
& \binom{-1}{3} \cdot\binom{1}{1}=(-1 \times 1)+(3 \times 1)=2 \\
& \left|\binom{-1}{3}\right|=\sqrt{(-1)^{2}+3^{2}}=\sqrt{10} \\
& \left.\binom{1}{1} \right\rvert\,=\sqrt{1^{2}+1^{2}}=\sqrt{2} \\
& \cos \theta=\frac{2}{\sqrt{10} \sqrt{2}} \\
& \theta=63.4^{\circ}
\end{aligned}
$$

By symmetry, angle $C D A$ is also equal to 63.4°, and angles $B C D$ and $D A B$ are both $180^{\circ}-63.4^{\circ}=116.6^{\circ}$.
2. (i) $\overrightarrow{A B}=\binom{4}{6}-\binom{2}{2}=\binom{2}{4}$
$\overrightarrow{B C}=\binom{10}{3}-\binom{4}{6}=\binom{6}{-3}$
$\overrightarrow{A B} \cdot \overrightarrow{B C}=\binom{2}{4} \cdot\binom{6}{-3}=(2 \times 6)+(4 \times-3)=12-12=0$
The lines $A B$ and $B C$ are perpendicular, therefore angle $A B C$ is a right angle.
(ii) Let the midpoint of $A C$ be M.

Edexcel AS FM Vectors 1 Exercise solutions

$$
\overrightarrow{O M}=\overrightarrow{O A}+\frac{1}{2} \overrightarrow{A C}
$$

$$
=\binom{2}{2}+\frac{1}{2}\left(\binom{10}{3}-\binom{2}{2}\right)=\binom{2}{2}+\frac{1}{2}\binom{8}{1}=\binom{6}{2.5}
$$

(iii) If $A B C D$ is a rectangle, $\overrightarrow{A D}=\overrightarrow{B C}=\binom{10}{3}-\binom{4}{6}=\binom{6}{-3}$

$$
\overrightarrow{O D}=\overrightarrow{O A}+\overrightarrow{A D}=\binom{2}{2}+\binom{6}{-3}=\binom{8}{-1}
$$

The coordinates of D are $(8,-1)$.
3. (i) If $\underset{\sim}{a}$ and $\underset{\sim}{b}$ are parallel, then there is a number ofor which $\underset{\sim}{a}=k \underset{\sim}{b}$.

$$
2 \underset{\sim}{i}+6 \underset{\sim}{j}-3 \underset{\sim}{k}=c(3 \underset{\sim}{i}+\underset{\sim}{j}+t \underset{\sim}{k})
$$

comparing coefficients of $\underset{\sim}{i}: \quad 2=3 c \Rightarrow c=\frac{2}{3}$
comparing coefficients of $j \underset{\sim}{j}: \quad 6=c s \Rightarrow 6=\frac{2}{3} s \Rightarrow s=9$
comparing coefficients of $\underset{\sim}{k}: \quad-3=c t \Rightarrow-3=\frac{2}{3} t \Rightarrow t=-\frac{9}{2}$
(ii) If $\underset{\sim}{a}$ and $\underset{\sim}{b}$ are perpendicular, then $\underset{\sim}{a} \cdot \underset{\sim}{b}=0$.

$$
\begin{aligned}
& (2 \underset{\sim}{i}+6 \underset{\sim}{j}-3 \underset{\sim}{k}) \cdot(3 \underset{\sim}{i}+\underset{\sim}{s}+t \underset{\sim}{j})=0 \\
& 6+6 s-3 t=0 \\
& t=2 s+2
\end{aligned}
$$

4. $\overrightarrow{A B}=(8 \underset{\sim}{i}+7 \underset{\sim}{j}-9 \underset{\sim}{k})-(-\underset{\sim}{i}+2 \underset{\sim}{j}+3 k \underset{\sim}{i})=9 \underset{\sim}{i}+5 \underset{\sim}{j}-12 k$ $\overrightarrow{B C}=(2 \underset{\sim}{i}-3 \underset{\sim}{j}-\underset{\sim}{k})-(8 \underset{\sim}{i}+7 \underset{\sim}{j}-9 k)=-6 \underset{\sim}{i}-10 \underset{\sim}{j}+8 \underset{\sim}{k}$ $\overrightarrow{A C}=(2 \underset{\sim}{i}-3 \underset{\sim}{j}-\underset{\sim}{k})-(-\underset{\sim}{i}+2 \underset{\sim}{j}+3 \underset{\sim}{k})=3 \underset{\sim}{i}-5 \underset{\sim}{j}-4 \underset{\sim}{k}$
$\overrightarrow{A B} \cdot \overrightarrow{B C}=(9 \underset{\sim}{i}+5 \underset{\sim}{j}-12 \underset{\sim}{k}) \cdot(-6 \underset{\sim}{i}-10 \underset{\sim}{j}+8 \underset{\sim}{k})=-54-50-96 \neq 0$
$\overrightarrow{B C} \cdot \overrightarrow{A C}=(-6 \underset{\sim}{i}-10 \underset{\sim}{j}+8 \underset{\sim}{j}) \cdot(3 \underset{\sim}{i}-5 \underset{\sim}{j}-4 \underset{\sim}{j})=-18+50-32=0$
so vectors $B C$ and $A C$ are perpendicular, and therefore the triangle has a right angle at C.

Edexcel AS FM Vectors 1 Exercise solutions

$$
\begin{aligned}
\text { Area of triangle } & =\frac{1}{2}|B C||A C| \\
& =\frac{1}{2} \sqrt{(-6)^{2}+(-10)^{2}+8^{2}} \sqrt{3^{2}+(-5)^{2}+(-4)^{2}} \\
& =\frac{1}{2} \sqrt{200} \sqrt{50} \\
& =\frac{1}{2} \times 10 \sqrt{2} \times 5 \sqrt{2} \\
& =25 \times 2 \\
& =50 \text { square units }
\end{aligned}
$$

