Section 3: The equation of a plane

Solutions to Exercise level 1

1. The normal vector is $\left(\begin{array}{c}5 \\ 1 \\ -2\end{array}\right)$, so the equation has the form $5 x+y-2 z=d$.

The plane contains the point $(2,-3,1)$, so $5 \times 2-3-2 \times 1=d$
$10-3-2=d$
$d=5$
The equation of the plane is $5 x+y-2 z=5$.
2. The normal vector is $\left(\begin{array}{c}3 \\ -1 \\ 4\end{array}\right)$, so the equation has the form r. $\left(\begin{array}{c}3 \\ -1 \\ 4\end{array}\right)=d$.

The plane contains the point $(1,4,0)$, so substituting the position vector $\left(\begin{array}{l}1 \\ 4 \\ 0\end{array}\right)$
gives $\left(\begin{array}{l}1 \\ 4 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}3 \\ -1 \\ 4\end{array}\right)=d$
$d=3-4+0=-1$
The equation of the plane is $r=\left(\begin{array}{c}3 \\ -1 \\ 4\end{array}\right)=-1$.
3. (i) $\overrightarrow{A B}=\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)-\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$
$\overrightarrow{A B} \cdot\left(\begin{array}{c}11 \\ 6 \\ 1\end{array}\right)=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}11 \\ 6 \\ 1\end{array}\right)=11-12+1=0$
so $\overrightarrow{A B}$ is perpendicular to $\left(\begin{array}{c}11 \\ 6 \\ 1\end{array}\right)$.

Edexcel AS FM Vectors 3 Exercise solutions

$\overrightarrow{B C}=\left(\begin{array}{l}1 \\ 2 \\ 5\end{array}\right)-\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{c}-2 \\ 3 \\ 4\end{array}\right)$
$\overrightarrow{B C} \cdot\left(\begin{array}{c}11 \\ 6 \\ 1\end{array}\right)=\left(\begin{array}{c}-2 \\ 3 \\ 4\end{array}\right) \cdot\left(\begin{array}{c}11 \\ 6 \\ 1\end{array}\right)=-22+18+4=0$
so $\overrightarrow{B C}$ is perpendicular to $\left(\begin{array}{c}11 \\ 6 \\ 1\end{array}\right)$.
(ii) The vector $\left(\begin{array}{c}11 \\ 6 \\ 1\end{array}\right)$ is normal to the plane, so the equation of the plane is of the
form $11 x+6 y+z=d$
substítuting $(2,1,0)$ gives $22+6=d$

$$
d=28
$$

The equation of the plane is $11 x+6 y+z=28$
4. $\overrightarrow{P Q}=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)-\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)=\left(\begin{array}{l}-1 \\ -3 \\ -3\end{array}\right)$
$\overrightarrow{P R}=\left(\begin{array}{c}3 \\ -2 \\ 1\end{array}\right)-\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)=\left(\begin{array}{c}2 \\ -6 \\ -1\end{array}\right)$
An equation for the plane is $\underset{\sim}{r}=\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 3 \\ 3\end{array}\right)+\mu\left(\begin{array}{c}2 \\ -6 \\ -1\end{array}\right)$
(Note: other correct forms are possible)
5. (i) (a) A general point on the line is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1+2 \lambda \\ 3 \\ 4-\lambda\end{array}\right)$ Substítuting into $2 x-3 y+z=3$:

Edexcel AS FM Vectors 3 Exercise solutions

$$
\begin{aligned}
& 2(1+2 \lambda)-3(3)+(4-\lambda)=3 \\
& 2+4 \lambda-9+4-\lambda=3 \\
& 3 \lambda=6 \\
& \lambda=2 \\
&\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1+2 \times 2 \\
3 \\
4-2
\end{array}\right)=\left(\begin{array}{l}
5 \\
3 \\
2
\end{array}\right)
\end{aligned}
$$

so the point of intersection is $(5,3,2)$.
(b) The direction vector for the line is $\underset{\sim}{d}=\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$

The normal vector to the plane is $\tilde{n}=\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)$
$\underset{\sim}{n} \cdot d=4+0-1=3$
$|\underset{\sim}{d}|=\sqrt{2^{2}+0^{2}+1^{2}}=\sqrt{5}$
$|\tilde{n}|=\sqrt{2^{2}+3^{2}+1^{2}}=\sqrt{14}$
Angle between these two vector is given by $\cos \theta=\frac{3}{\sqrt{5} \sqrt{14}}$

$$
\theta=69.0^{\circ}
$$

The angle between the line and the plane is $90^{\circ}-69.0^{\circ}=21.0^{\circ}$
(ii) (a) A general point on the line is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}2+\lambda \\ -1+3 \lambda \\ 5+4 \lambda\end{array}\right)$

Substituting into $3 x+y+4 z=3$:

$$
\begin{aligned}
& 3(2+\lambda)+(-1+3 \lambda)+4(5+4 \lambda)=3 \\
& 6+3 \lambda-1+3 \lambda+20+16 \lambda=3 \\
& 22 \lambda=-22 \\
&\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2-1 \\
-1-3 \\
5-4
\end{array}\right)=\left(\begin{array}{c}
1 \\
-4 \\
1
\end{array}\right)
\end{aligned}
$$

so the point of intersection is ($1,-4,1$)

Edexcel AS FM Vectors 3 Exercise solutions

(b) The direction vector for the line is $\underset{\sim}{d}=\left(\begin{array}{l}1 \\ 3 \\ 4\end{array}\right)$

The normal vector to the plane is $\tilde{n}=\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)$
$\underset{\sim}{n} \cdot \underset{\sim}{d}=3+3+16=22$
$|\underset{\sim}{d}|=\sqrt{1^{2}+3^{2}+4^{2}}=\sqrt{26}$
$|n|=\sqrt{3^{2}+1^{2}+4^{2}}=\sqrt{26}$
Angle between these two vector is given by $\cos \theta=\frac{22}{\sqrt{26} \sqrt{26}}$
$\theta=32.2^{\circ}$
The angle between the lime and the plane is $90^{\circ}-32.2^{\circ}=57.8^{\circ}$
(iii) (a) A general point on the line is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1+4 \lambda \\ 3-3 \lambda \\ -2+2 \lambda\end{array}\right)$

Substítuting into $5 x+2 y+7 z=11$:

$$
\begin{aligned}
& \qquad 5(1+4 \lambda)+2(3-3 \lambda)+7(-2+2 \lambda)=11 \\
& 5+20 \lambda+6-6 \lambda-14+14 \lambda=11 \\
& 28 \lambda=14 \\
& \lambda=\frac{1}{2} \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1+2 \\
3-\frac{3}{2} \\
-2+1
\end{array}\right)=\left(\begin{array}{c}
3 \\
\frac{3}{2} \\
-1
\end{array}\right) \\
& \text { so the point ofintersection is }\left(3, \frac{3}{2},-1\right) .
\end{aligned}
$$

(b) The direction vector for the line is $\underset{\sim}{d}=\left(\begin{array}{c}4 \\ -3 \\ 2\end{array}\right)$

The normal vector to the plane is $\tilde{n}=\left(\begin{array}{l}5 \\ 2 \\ 7\end{array}\right)$
n. $\cdot \underset{\sim}{d}=20-6+14=28$
$|d|=\sqrt{4^{2}+3^{2}+2^{2}}=\sqrt{29}$
$|\tilde{n}|=\sqrt{5^{2}+2^{2}+7^{2}}=\sqrt{78}$

Edexcel AS FM Vectors 3 Exercise solutions

Angle between these two vector is given by $\cos \theta=\frac{28}{\sqrt{29} \sqrt{78}}$
$\theta=53.9^{\circ}$
The angle between the line and the plane is $90^{\circ}-53.9^{\circ}=36.1^{\circ}$

