Edexcel AS Further Mathematics Vectors

Section 2: The vector equation of a line

Solutions to Exercise level 2

1. (i) Line $A B$: Direction vector $=\binom{4}{-1}-\binom{2}{3}=\binom{2}{-4}=2\binom{1}{-2}$

Equation of line is $\underset{\sim}{r}=\binom{2}{3}+\lambda\binom{1}{-2}$

Line $C D$: Direction vector $=\binom{3}{5}-\binom{6}{0}=\binom{-3}{5}$
Equation of line is $\underset{\sim}{r}=\binom{6}{0}+\mu\binom{-3}{5}$
(ii) At point of intersection: $\binom{2}{3}+\lambda\binom{1}{-2}=\binom{6}{0}+\mu\binom{-3}{5}$

$$
2+\lambda=6-3 \mu \Rightarrow \lambda=4-3 \mu
$$

$$
3-2 \lambda=5 \mu
$$

$$
3-2(4-3 \mu)=5 \mu
$$

$$
3-8+6 \mu=5 \mu
$$

$$
\mu=5
$$

Point of intersection is $\underset{\sim}{r}=\binom{6}{0}+5\binom{-3}{5}=\binom{-9}{25}$
The point of intersection has coordinates (-9.25)
(iii) Angle between line is angle between direction vectors.

$$
\begin{aligned}
& \binom{1}{-2} \cdot\binom{-3}{5}=(1 \times-3)+(-2 \times 5)=-13 \\
& \left.\binom{1}{-2} \right\rvert\,=\sqrt{1^{2}+(-2)^{2}}=\sqrt{5} \\
& \left|\binom{-3}{5}\right|=\sqrt{(-3)^{2}+5^{2}}=\sqrt{34} \\
& \cos \theta=\frac{-13}{\sqrt{5} \sqrt{34}} \\
& \theta=175.6^{\circ} \text { (1 d.p.) }
\end{aligned}
$$

Edexcel AS FM Vectors 2 Exercise solutions

2. (i) Line $A B$: Direction vector $=\binom{0}{3}-\binom{1}{0}=\binom{-1}{3}$

Equation of line is $\underset{\sim}{r}=\binom{1}{0}+\lambda\binom{-1}{3}$
Line $B C$: Direction vector $=\binom{2}{5}-\binom{0}{3}=\binom{2}{2}=2\binom{1}{1}$
Equation of line is $\underset{\sim}{r}=\binom{0}{3}+\lambda\binom{1}{1}$
Line $C D$: Direction vector $=\binom{3}{2}-\binom{2}{5}=\binom{1}{-3}$
Equation of line is $\underset{\sim}{r}=\binom{2}{5}+\lambda\binom{1}{-3}$
Line $A D: \quad$ Direction vector $=\binom{3}{2}-\binom{1}{0}=\binom{2}{2}=2\binom{1}{1}$
Equation of line is $\underset{\sim}{r}=\binom{1}{0}+\lambda\binom{1}{1}$
(ii) $A B$ is parallel to $D C$, and $B C$ is parallel to $A D, A B C D$ is a parallelogram.
(iii) Angle $A B C$ is angle between vectors $\overrightarrow{A B}=\binom{-1}{3}$ and $\overrightarrow{C B}=\binom{-2}{-2}$.

$$
\begin{aligned}
& \binom{-1}{3} \cdot\binom{-2}{-2}=(-1 \times-2)+(3 \times-2)=-4 \\
& \left|\binom{-1}{3}\right|=\sqrt{(-1)^{2}+3^{2}}=\sqrt{10} \\
& \left|\binom{-2}{-2}\right|=\sqrt{(-2)^{2}+(-2)^{2}}=2 \sqrt{2} \\
& \cos \theta=\frac{-4}{2 \sqrt{10} \sqrt{2}}
\end{aligned}
$$

$$
\theta=116.6^{\circ}
$$

By symmetry, angle CDA is also equal to 116.6°, and angles $B C D$ and $D A B$ are both $180^{\circ}-116.6^{\circ}=63.4^{\circ}$
3. At point of intersection of ${\underset{\sim}{r}}=-6 \underset{\sim}{j}+\lambda(\underset{\sim}{i}+\underset{\sim}{j})$ and ${\underset{\sim}{r}}^{2}=9 \underset{\sim}{j}+\mu(3 \underset{\sim}{i}-2 \underset{\sim}{j})$:

$$
\begin{aligned}
& -6 \underset{\sim}{j}+\lambda(\underset{\sim}{i}+\underset{\sim}{j})=9 \underset{\sim}{j}+\mu(3 \underset{\sim}{i}-2 \underset{\sim}{j}) \\
& \lambda=3 \mu
\end{aligned}
$$

Edexcel AS FM Vectors 2 Exercise solutions

$$
\begin{aligned}
& -6+\lambda=9-2 \mu \\
& -6+3 \mu=9-2 \mu \\
& 5 \mu=15 \\
& \mu=3
\end{aligned}
$$

The point of intersection is $\underset{\sim}{r}=9 \underset{\sim}{j}+3(3 \underset{\sim}{i}-2 \underset{\sim}{j})=9 \underset{\sim}{i}+3 \underset{\sim}{j}$

To check whether this point lies on the line ${\underset{\sim}{3}}=-15 \underset{\sim}{j}+\delta(\underset{\sim}{i}+2 \underset{\sim}{j})$:

$$
\begin{aligned}
& 9 \underset{\sim}{i}+3 \underset{\sim}{j}=-15 \underset{\sim}{j}+\delta(\underset{\sim}{i}+2 \underset{\sim}{j}) \\
& 9 \underset{\sim}{i}+18 \underset{\sim}{j}=\delta(\underset{\sim}{i}+2 \underset{\sim}{j}) \\
& 9(\underset{\sim}{i}+2)=\delta(\underset{\sim}{i}+2 \underset{\sim}{j})
\end{aligned}
$$

So the point $(9,3)$ does lie on this line.
Therefore all three lines pass through the point $(9,3)$.
4. The angle between the lines is the angle between $\left(\begin{array}{l}0 \\ 5 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}4 \\ 2 \\ 2\end{array}\right)$ $\left(\begin{array}{l}0 \\ 5 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}4 \\ 2 \\ 2\end{array}\right)=(0 \times 4)+(5 \times 2)+(1 \times 2)=12$ $\left|\left(\begin{array}{l}0 \\ 5 \\ 1\end{array}\right)\right|=\sqrt{0^{2}+5^{2}+1^{2}}=\sqrt{26} \quad\left|\left(\begin{array}{l}4 \\ 2 \\ 2\end{array}\right)\right|=\sqrt{4^{2}+2^{2}+2^{2}}=\sqrt{24}$
$\cos \theta=\frac{12}{\sqrt{26} \sqrt{24}}$
$\theta=61.3^{\circ}$
5. At intersection, $\underset{\sim}{k}+\lambda(\underset{\sim}{i}-\underset{\sim}{j}-3 \underset{\sim}{k})=2 \underset{\sim}{i}+\underset{\sim}{j}+\mu(3 \underset{\sim}{j} \underset{\sim}{j}+5 \underset{\sim}{k})$

Equating coefficients of $\underset{\sim}{i}: \quad \lambda=2$
Equating coefficients of $\underset{\sim}{j}: \quad-\lambda=1+3 \mu \Rightarrow-2=1+3 \mu \Rightarrow \mu=-1$
Equating coefficients of $\underset{\sim}{k}$: $\quad 1-3 \lambda=5 \mu$

$$
\begin{aligned}
& \text { LHS }=1-3 \times 2=-5 \\
& \text { RHS }=5 \times-1=-5
\end{aligned}
$$

All three equations are satisfied by $\lambda=2, \mu=-1$, so the lines intersect.

Posítion vector of point of intersection $=\underset{\sim}{k}+2(\underset{\sim}{i}-\underset{\sim}{j}-3 \underset{\sim}{k})=2 \underset{\sim}{i}-2 \underset{\sim}{j}-5 \underset{\sim}{k}$
The point of intersection is $(2,-2,-5)$.

Edexcel AS FM Vectors 2 Exercise solutions

6. $\underset{\sim}{r}=2 \underset{\sim}{i}-3 \underset{\sim}{j}+2 \underset{\sim}{k}+\lambda(\underset{\sim}{i}+2 \underset{\sim}{j}-3 \underset{\sim}{k})$

If point A lies on the line, $\underset{\sim}{i}-2 \underset{\sim}{j}=2 \underset{\sim}{i}-3 \underset{\sim}{j}+2 \underset{\sim}{k}+\lambda(\underset{\sim}{i}+2 \underset{\sim}{j}-3 \underset{\sim}{i})$

$$
-\underset{\sim}{i}+\underset{\sim}{j}-2 \underset{\sim}{k}=\lambda(\underset{\sim}{i}+2 \underset{\sim}{j}-3 k \underset{\sim}{k})
$$

This is not true for any value of λ, so the point A does not lie on the line.

If point B lies on the line, $3 \underset{\sim}{i}-\underset{\sim}{j}-\underset{\sim}{k}=2 \underset{\sim}{i}-3 \underset{\sim}{j}+2 \underset{\sim}{k}+\lambda(\underset{\sim}{i}+2 \underset{\sim}{j}-3 \underset{\sim}{k})$

$$
\underset{\sim}{i}+2 \underset{\sim}{j}-3 \underset{\sim}{k}=\lambda(\underset{\sim}{i}+2 \underset{\sim}{j}-3 k \underset{\sim}{k})
$$

This is true for $\lambda=1$, so the point B lies on the line.

If point c lies on the line, $\underset{\sim}{i}+\underset{\sim}{j}+2 \underset{\sim}{k}=2 \underset{\sim}{i}-3 \underset{\sim}{j}+2 \underset{\sim}{k}+\lambda(\underset{\sim}{i}+2 \underset{\sim}{j}-3 \underset{\sim}{k})$

$$
-\underset{\sim}{i}+4 \underset{\sim}{j}=+\lambda(\underset{\sim}{i}+2 \underset{\sim}{j}-3 \underset{\sim}{k})
$$

This is not true for any value of λ, so the point C does not lie on the line.
7. (i) Direction vector $=7 \underset{\sim}{i}-2 \underset{\sim}{j}+3 k \sim \sim(4 \underset{\sim}{i}-8 \underset{\sim}{j})$

$$
\begin{aligned}
& =3 \underset{\sim}{i}+6 \underset{\sim}{j}+3 \underset{\sim}{k} \\
& =3(\underset{\sim}{i}+2 \underset{\sim}{j}+\underset{\sim}{k})
\end{aligned}
$$

Vector equation of line $A B$ is $\underset{\sim}{r}=4 \underset{\sim}{i}-8 \underset{\sim}{j}+\lambda(\underset{\sim}{i}+2 \underset{\sim}{j}+\underset{\sim}{k})$
(ii) At point of intersection, $4 \underset{\sim}{i}-8 \underset{\sim}{j}+\lambda(\underset{\sim}{i}+2 \underset{\sim}{j}+\underset{\sim}{k})=8 \underset{\sim}{i}-2 \underset{\sim}{j}+\mu(\underset{\sim}{i}+\underset{\sim}{j}-\underset{\sim}{k})$

Equating coefficients of $\underset{\sim}{i}: \quad 4+\lambda=8+\mu$
Equating coefficients of j :
$-8+2 \lambda=-2+\mu$
Equating coefficients of $\underset{\sim}{k}$:
$\lambda=-\mu$
Substítuting (3) into (1): $4-\mu=8+\mu \Rightarrow-4=2 \mu \Rightarrow \mu=-2$
substituting (3) into (2): $-8-2 \mu=-2+\mu \Rightarrow-6=3 \mu \Rightarrow \mu=-2$
All 3 equations are satisfied by $\mu=-2, \lambda=2$, so the lines intersect.
Posítion vector of point of intersection is $\underset{\sim}{r}=4 \underset{\sim}{i}-8 \underset{\sim}{j}+2(\underset{\sim}{i}+2 \underset{\sim}{j}+\underset{\sim}{k})$

$$
=6 \underset{\sim}{i}-4 \underset{\sim}{j}+2 \underset{\sim}{k}
$$

Point of intersection is $(6,-4,2)$

Edexcel AS FM Vectors 2 Exercise solutions
8. $\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ -2 \\ -3\end{array}\right)=\left(\begin{array}{l}3 \\ -4 \\ 2\end{array}\right)+\mu\left(\begin{array}{l}1 \\ 3 \\ k\end{array}\right)$
(1) $2+\lambda=3+\mu$
(2) $3-2 \lambda=-4+3 \mu$
(3) $1-3 \lambda=2+k \mu$
$2 \times(1)+(2) \Rightarrow 7=2+5 \mu \Rightarrow \mu=1, \lambda=2$
substituting into (3) gives $1-6=2+k \Rightarrow k=-7$
Position vector of P is given by $r=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)+2\left(\begin{array}{c}1 \\ -2 \\ -3\end{array}\right)=\left(\begin{array}{c}4 \\ -1 \\ -5\end{array}\right)$
SOP $=(4,-1,-5)$

