Section 2: The vector equation of a line

Solutions to Exercise level 1

1. (i) Direction vector is $\binom{3}{-1}-\binom{2}{5}=\binom{1}{-6}$

Equation of line is $\underset{\sim}{r}=\binom{2}{5}+\lambda\binom{1}{-6}$
(ii) Direction vector is $\binom{1}{6}-\binom{-3}{2}=\binom{4}{4}=4\binom{1}{1}$

Equation of line is $\underset{\sim}{r}=\binom{-3}{2}+\lambda\binom{1}{1}$
(iii) Direction vector is $\binom{3}{-1}$

Equation of line is $\underset{\sim}{r}=\binom{0}{6}+\lambda\binom{3}{-1}$
2. (i) $\binom{3}{3}+\lambda\binom{1}{-1}=\binom{1}{0}+\mu\binom{2}{2}$
$3+\lambda=1+2 \mu$
$3-\lambda=2 \mu$
Adding: $\quad 6=1+4 \mu$

$$
\begin{aligned}
& 5=4 \mu \\
& \mu=\frac{5}{4}
\end{aligned}
$$

Point of intersection $=\binom{1}{0}+\frac{5}{4}\binom{2}{2}=\binom{3.5}{2.5}$
The coordinates of the point of intersection are $(3.5,2.5)$
(ii) $\binom{2}{1}+\lambda\binom{3}{0}=\binom{4}{3}+\mu\binom{1}{2}$
$2+3 \lambda=4+\mu$
$1=3+2 \mu \quad \Rightarrow-2=2 \mu \quad \Rightarrow-1=\mu$
Point of intersection is $\binom{4}{3}-\binom{1}{2}=\binom{3}{1}$
The coordinates of the point of intersection are $(3,1)$

Edexcel AS FM Vectors 2 Exercise solutions

3. (i) Angle between lines is angle between direction vectors $3 i-4 \underset{\sim}{j}$ and $2 i-3 j$.
$(3 i-4 \underset{\sim}{j}) \cdot(2 \underset{\sim}{i}-3 \underset{\sim}{j})=(3 \times 2)+(-4 \times-3)=18$
$|3 i \sim-4 \underset{\sim}{j}|=\sqrt{3^{2}+4^{2}}=5$
$|2 i \sim-3 j|=\sqrt{2^{2}+3^{2}}=\sqrt{13}$
$\cos \theta=\frac{18}{5 \sqrt{13}}$
$\theta=3.2^{\circ}$ (1 d.p.)
(ii) (a) $(8 i+6 \underset{\sim}{j})(3 i-4 \underset{\sim}{j})=(8 \times 3)+(6 \times-4)=24-24=0$
so the line $\underset{\sim}{r}=2 \underset{\sim}{i}-\underset{\sim}{j}+\lambda(3 \underset{\sim}{i}-4 \underset{\sim}{j})$ is perpendicular to $8 i \underset{\sim}{i}+6 \underset{\sim}{j}$.
(b) $(6 \underset{\sim}{i}+4 \underset{\sim}{j})(2 \underset{\sim}{i}-3 \underset{\sim}{j})=(6 \times 2)+(4 \times-3)=12-12=0$
so the line $\underset{\sim}{s}=3 \underset{\sim}{i}+\underset{\sim}{j}+\mu(2 \underset{\sim}{i}-3 \underset{\sim}{j})$ is perpendicular to $6 \underset{\sim}{i}+4 \underset{\sim}{j}$.
(iii) The line $\underset{\sim}{r}=2 \underset{\sim}{i}-\underset{\sim}{j}+\lambda(3 \underset{\sim}{i}-4 \underset{\sim}{j})$ is parallel to the direction vector $3 \underset{\sim}{i}-4 \underset{\sim}{j}$. The unit vector is $\frac{3 i-4 \underset{\sim}{j}}{\sqrt{3^{2}+4^{2}}}=\frac{3}{5} i-\frac{4}{5} j$

The line $\underset{\sim}{s}=3 \underset{\sim}{i}+\underset{\sim}{j}+\mu(2 \underset{\sim}{i}-3 \underset{\sim}{j})$ is parallel to the direction vector $2 \underset{\sim}{i}-3 \underset{\sim}{j}$.
The unit vector is $\frac{2 i-3 j}{\sqrt{2^{2}+3^{2}}}=\frac{2}{\sqrt{13}} i-\frac{3}{\sqrt{13}} j$
4. Direction vector $=\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)-\left(\begin{array}{c}-2 \\ 3 \\ 5\end{array}\right)=\left(\begin{array}{c}5 \\ -2 \\ -4\end{array}\right)$ Alternatively the

Vector equation of line is $\underset{\sim}{r}=\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}5 \\ -2 \\ -4\end{array}\right)$
cartesian equation of line is $\frac{x-3}{5}=\frac{y-1}{-2}=\frac{z-1}{-4}$
5. $\frac{x-3}{-1}=\frac{y-1}{2}=\frac{z-3}{2}$
6. $r=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$
7. (i) $\quad \underset{\sim}{r}=\left(\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 0 \\ -3\end{array}\right)$ and $\underset{\sim}{r}=\left(\begin{array}{c}5 \\ 3 \\ -2\end{array}\right)+\mu\left(\begin{array}{c}1 \\ 2 \\ 4\end{array}\right)$

At intersection, $\left\{\begin{array}{cc}-2+2 \lambda=5+\mu & \text { (1) } \\ 1=3+2 \mu & \text { (2) } \\ 3-3 \lambda=-2+4 \mu & \text { (3) }\end{array}\right.$
(2) $\Rightarrow 2 \mu=-2 \quad \Rightarrow \mu=-1$
substítuting into (1): $\quad 2 \lambda=7+\mu=6 \Rightarrow \lambda=3$
For (3): \quad LHS $=3-9=-6$, RHS $=-2-4=-6$
so the lines do intersect.
Position vector of intersection point is $\underset{\sim}{r}=\left(\begin{array}{c}5 \\ 3 \\ -2\end{array}\right)-\left(\begin{array}{c}1 \\ 2 \\ 4\end{array}\right)=\left(\begin{array}{c}4 \\ 1 \\ -6\end{array}\right)$
intersection point is $(4,1,-6)$.
(ii) $\underset{\sim}{r}=\left(\begin{array}{c}3 \\ -1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)$ and $\underset{\sim}{r}=\left(\begin{array}{c}5 \\ 1 \\ -3\end{array}\right)+\mu\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)$

At intersection, $\begin{cases}3+\lambda=5-2 \mu & \text { (1) } \\ -1+2 \lambda=1+\mu & \text { (2) } \\ -3 \lambda=-3+\mu & \text { (3) }\end{cases}$
(2) - (3): $-1+5 \lambda=4 \Rightarrow \lambda=1, \mu=0$

For (1): LHS $=3+1=4$, RHS $=5-0=5$
so the lines do not intersect.
(iii) $\underset{\sim}{r}=\left(\begin{array}{c}2 \\ 6 \\ -3\end{array}\right)+\lambda\left(\begin{array}{c}4 \\ 2 \\ -3\end{array}\right)$ and $\underset{\sim}{r}=\left(\begin{array}{l}2 \\ 0 \\ 4\end{array}\right)+\mu\left(\begin{array}{c}1 \\ -1 \\ -3\end{array}\right)$

Edexcel AS FM Vectors 2 Exercise solutions

At intersection, $\left\{\begin{array}{c}2+4 \lambda=2+\mu \\ 6+2 \lambda=-\mu \\ -3-3 \lambda=4-3 \mu\end{array}\right.$
(1) $+(2): \quad 8+6 \lambda=2 \Rightarrow \lambda=-1, \mu=-4$

For (3): LHS $=-3+3=0$, RHS $=4+12=16$ so the lines do not intersect.
(iv) $\underset{\sim}{r}=\left(\begin{array}{l}1 \\ 2 \\ 6\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right)$ and $\underset{\sim}{r}=\left(\begin{array}{c}1 \\ -5 \\ 4\end{array}\right)+\mu\left(\begin{array}{c}2 \\ 3 \\ -4\end{array}\right)$

At intersection, $\left\{\begin{array}{c}1-\lambda=1+2 \mu \\ 2+2 \lambda=-5+3 \mu \\ 6+3 \lambda=4-4 \mu\end{array}\right.$
$2 \times(1)+(2): \quad 4=-3+7 \mu \Rightarrow \mu=1, \lambda=-2$
For (3): LHS $=6-6=0$, RHS $=4-4=0$
so the lines do intersect.
Position vector of intersection point is $\underset{\sim}{r}=\left(\begin{array}{c}1 \\ -5 \\ 4\end{array}\right)+\left(\begin{array}{c}2 \\ 3 \\ -4\end{array}\right)=\left(\begin{array}{c}3 \\ -2 \\ 0\end{array}\right)$
The intersection point is $(3,-2,0)$.

