Section 2: Proof by Induction

Solutions to Exercise level 3

- 1. $2(2) + 3(2^2) + 4(2^3) + \dots + (n+1)(2^n) = \sum_{r=1}^n (r+1)2^r$ To prove $\sum_{r=1}^n (r+1)2^r = n(2^{n+1})$
 - Step 1: When n = 1 L.H.S. $= 2 \times 2 = 4$ R.H.S. $= 1 \times 2^{2} = 4$ so it is true for n = 1.

Step 2: Assume
$$\sum_{r=1}^{k} (r+1)2^{r} = k(2^{k+1})$$

 $\sum_{r=1}^{k+1} (r+1)2^{r} = k(2^{k+1}) + (k+2)2^{k+1}$
 $= k(2^{k+1}) + k(2^{k+1}) + 2 \times 2^{k+1}$
 $= 2k(2^{k+1}) + 2 \times 2^{k+1}$
 $= k(2^{k+2}) + 2^{k+2}$
 $= (k+1)2^{k+2}$

Step 3: So if the result is true for n = k, then it is true for n = k + 1. Since it is true for n = 1, then it is true for all positive integers greater than or equal to 1 by induction.

We have $2(2) + 3(2^2) + 4(2^3) + \dots + (n+1)(2^n)$ We want to find $1(2) + 2(2^2) + 3(2^3) + \dots + 98(2^{98})$

$$\frac{1(2) +2(2^{2}) +3(2^{3}) +\dots +98(2^{98}) S_{1}}{2(2) +3(2^{2}) +4(2^{3}) +\dots +99(2^{98}) S_{2}} S_{2}$$

 S_2 is a geometric series with first term 2, common ratio 2 and 98 terms.

$$S_2 = \frac{2(2^{9^g} - 1)}{2 - 1} = 2(2^{9^g} - 1)$$

 S_3 is the previous sum, with n = 98.

$$S_{0} S_{1} = S_{3} - S_{2}$$

= 98(2⁹⁹) - 2(2⁹⁸ - 1)
= 98(2⁹⁹) - 2⁹⁹ + 2
= 97(2⁹⁹) + 2

2. (i)
$$F_3, F_4, \dots F_{10} = 2, 3, 5, 8, 13, 21, 34, 55$$

$$\begin{aligned} &(ii) \ \ \mathcal{F}_{n+5} = \mathcal{F}_{n+4} + \mathcal{F}_{n+3} \\ &= \mathcal{F}_{n+3} + \mathcal{F}_{n+2} + \mathcal{F}_{n+3} \\ &= 2\mathcal{F}_{n+3} + \mathcal{F}_{n+2} \\ &= 2(\mathcal{F}_{n+2} + \mathcal{F}_{n+1}) + \mathcal{F}_{n+2} \\ &= 3\mathcal{F}_{n+2} + 2\mathcal{F}_{n+1} \\ &= 3(\mathcal{F}_{n+1} + \mathcal{F}_n) + 2\mathcal{F}_{n+1} \\ &= 5\mathcal{F}_{n+1} + 3\mathcal{F}_n \end{aligned}$$

(iii) To prove that F_{5n} is a multiple of 5 for $n \geq 1$

Step 1:	For $n = 1$, $F_5 = 5$
	So ít ís true for n = 1

Step 2: Assume
$$F_{5k}$$
 is a multiple of 5,
so $F_{5k} = 5p$ for some integer p
Consider $n = k+1$
 $F_{5(k+1)} = F_{5k+5}$
Using result from (ii):
 $F_{5k+5} = 5F_{5k+1} + 3F_{5k}$
 $= 5F_{5k+1} + 3 \times 5p$
 $= 5(F_{5k+1} + 3p)$
so $F_{5(k+1)}$ is a multiple of 5.

Step 3: So if the result is true for n = k, then it is true for n = k+1. Since it is true for n = 1, then it is true for all positive integers greater than or equal to 1 by induction.